7 research outputs found
Business Days Time Series Weekly Trend and Seasonality
The world changes at incredible speed. Global warming and enormous money printing are two examples, which do not affect every one of us equally. “Where and when to spend the vacation?”; “In what currency to store the money?” are just a few questions that might get asked more frequently. Knowledge gained from freely available temperature data and currency exchange rates can provide better advice. Classical time series decomposition discovers trend and seasonality patterns in data. I propose to visualize trend and seasonality data in one chart. Furthermore, I developed a calendar adjustment method to obtain weekly trend and seasonality data and display them in the chart
Calculation and design of the main equipment for mobile space simulation system
This article presents the results of the analysis of approaches to designing a mobile vacuum system ‘METAMORPHOSIS’ for simulation of space environment, which could help provide services of testing space objects at the request of the customers at a place and time acceptable to them, which allows saving time and assets in the development of space objects, their elements, including satellites. As a result of the conducted analysis, methodological approaches to the determination of the structure of the vacuum system were undertaken. To avoid unanticipated issues and to validate computer-driven modelling, testing in a space simulation chamber is an important part of the quality-assurance process. Spacecraft and their components must withstand extreme temperatures and pressure to travel outside the Earth’s atmosphere. Space simulation testing involves the use of a thermal vacuum chamber to replicate the conditions experienced in space
Elasticity and mechanical breakdown of Kevlar 149 aramid fibres by a probabilistic approach
Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships
A computational study of the effect of microstructure of hybrid carbon/glass fiber composites on their strength is presented. Unit cells with hundreds of randomly located and misaligned fibers of various properties and arrangements are subject to tensile and compression loading, and the evolution of fiber damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanoreinforcement, load sharing rules on the strength and damage resistance of composites are studied. It was observed that hybrid composites under uniform displacement loading might have lower strength than pure composites, while the strength of hybrid composites under inform force loading increases steadily with increasing the volume content of carbon fibers
