1,602 research outputs found

    Multiscale examination of strain effects in Nd-Fe-B permanent magnets

    Full text link
    We have performed a combined first-principles and micromagnetic study on the strain effects in Nd-Fe-B magnets. First-principles calculations on Nd2Fe14B reveal that the magnetocrystalline anisotropy (K) is insensitive to the deformation along c axis and the ab in-plane shrinkage is responsible for the K reduction. The predicted K is more sensitive to the lattice deformation than what the previous phenomenological model suggests. The biaxial and triaxial stress states have a greater impact on K. Negative K occurs in a much wider strain range in the ab biaxial stress state. Micromagnetic simulations of Nd-Fe-B magnets using first-principles results show that a 3-4% local strain in a 2-nm-wide region near the interface around the grain boundaries and triple junctions leads to a negative local K and thus decreases the coercivity by ~60%. The local ab biaxial stress state is more likely to induce a large loss of coercivity. In addition to the local stress states and strain levels themselves, the shape of the interfaces and the intergranular phases also makes a difference in determining the coercivity. Smoothing the edge and reducing the sharp angle of the triple regions in Nd-Fe-B magnets would be favorable for a coercivity enhancement.Comment: 9 figure

    Computational study on microstructure evolution and magnetic property of laser additively manufactured magnetic materials

    Full text link
    Additive manufacturing (AM) offers an unprecedented opportunity for the quick production of complex shaped parts directly from a powder precursor. But its application to functional materials in general and magnetic materials in particular is still at the very beginning. Here we present the first attempt to computationally study the microstructure evolution and magnetic properties of magnetic materials (e.g. Fe-Ni alloys) processed by selective laser melting (SLM). SLM process induced thermal history and thus the residual stress distribution in Fe-Ni alloys are calculated by finite element analysis (FEA). The evolution and distribution of the γ\gamma-Fe-Ni and FeNi3_3 phase fractions were predicted by using the temperature information from FEA and the output from CALculation of PHAse Diagrams (CALPHAD). Based on the relation between residual stress and magnetoelastic energy, magnetic properties of SLM processed Fe-Ni alloys (magnetic coercivity, remanent magnetization, and magnetic domain structure) are examined by micromagnetic simulations. The calculated coercivity is found to be in line with the experimentally measured values of SLM-processed Fe-Ni alloys. This computation study demonstrates a feasible approach for the simulation of additively manufactured magnetic materials by integrating FEA, CALPHAD, and micromagnetics.Comment: 20 pages, 15 figure

    Unidirectional anisotropy in cubic FeGe with antisymmetric spin-spin-coupling

    Full text link
    We report strong unidirectional anisotropy in bulk polycrystalline B20 FeGe measured by ferromagnetic resonance spectroscopy. Bulk and micron-sized samples were produced and analytically characterized. FeGe is a B20 compound with inherent Dzyaloshinskii-Moriya interaction. Lorenz microscopy confirms a skyrmion lattice at 190  K190 \; \text{K} in a magnetic field of 150 mT. Ferromagnetic resonance was measured at 276  K±1  K276 \; \text{K} \pm 1 \; \text{K}, near the Curie temperature. Two resonance modes were observed, both exhibit a unidirectional anisotropy of K=1153  J/m3±10  J/m3K=1153 \; \text{J/m}^3 \pm 10 \; \text{J/m}^3 in the primary, and K=28  J/m3±2  J/m3K=28 \; \text{J/m}^3 \pm 2 \; \text{J/m}^3 in the secondary mode, previously unknown in bulk ferromagnets. Additionally, about 25 standing spin wave modes are observed inside a micron-sized FeGe wedge, measured at room temperature (  293\sim \; 293 K). These modes also exhibit unidirectional anisotropy

    Structural, magnetic and mechanical properties of 5 µm thick SmCo films for use in Micro-Electro-Mechanical-Systems

    Get PDF
    5µm thick SmCo films were deposited onto Si substrates using triode sputtering. A study of the influence of deposition temperature (Tdep ≤ 600°C) on the structural, magnetic and mechanical properties has shown that optimum properties (highest degree of in-plane texture, maximum in-plane coercivity and remanence (1.3 and 0.8 T, respectively), no film peel-off) are achieved for films deposited at the relatively low temperature of 350°C. This temperature is compatible with film integration into Micro-Electro-Mechanical-Systems (MEMS). The deposition rate was increased from 3.6 to 18 µm/h by increasing the surface area of the target from 7 to 81 cm2. Mechanically stable films could be prepared by deposition onto pre-patterned films or deposition through holes in a mask

    Effects of hydrostatic pressure on the magnetism and martensitic transition of Ni-Mn-In magnetic superelastic alloys

    Full text link
    We report magnetization and differential thermal analysis measurements as a function of pressure accross the martensitic transition in magnetically superelastic Ni-Mn-In alloys. It is found that the properties of the martensitic transformation are significantly affected by the application of pressure. All transition temperatures shift to higher values with increasing pressure. The largest rate of temperature shift with pressure has been found for Ni50_{50}Mn34_{34}In16_{16} as a consequence of its small entropy change at the transition. Such a strong pressure dependence of the transition temperature opens up the possibility of inducing the martensitic transition by applying relatively low hydrostatic pressures.Comment: 3 pages, 3 figures. Accepted for publication in Applied Physics Letter

    Численное моделирование циклов магнитного охлаждения Брайтона

    Get PDF
    Была разработана компьютерная модель работы магнитного холодильника, работающего по циклу Брайтона при температурах вблизи комнатных. Данная модель использовалась для расчета теоретического предела рабочей разности температур и мощности охлаждения. Мощность охлаждения была рассчитана для цикла Брайтона с одним и двумя рабочими телами, в которых в качестве рабочих тел использовался редкоземельный металл гадолиний. Полученные результаты наглядно демонстрируют функциональные диапазоны магнитных холодильников, работающих по циклу Брайтона

    Magnetic properties of (Fe1x_{1-x}Cox_x)2_2B alloys and the effect of doping by 5dd elements

    Full text link
    We have explored, computationally and experimentally, the magnetic properties of \fecob{} alloys. Calculations provide a good agreement with experiment in terms of the saturation magnetization and the magnetocrystalline anisotropy energy with some difficulty in describing Co2_2B, for which it is found that both full potential effects and electron correlations treated within dynamical mean field theory are of importance for a correct description. The material exhibits a uniaxial magnetic anisotropy for a range of cobalt concentrations between x=0.1x=0.1 and x=0.5x=0.5. A simple model for the temperature dependence of magnetic anisotropy suggests that the complicated non-monotonous temperature behaviour is mainly due to variations in the band structure as the exchange splitting is reduced by temperature. Using density functional theory based calculations we have explored the effect of substitutional doping the transition metal sublattice by the whole range of 5dd transition metals and found that doping by Re or W elements should significantly enhance the magnetocrystalline anisotropy energy. Experimentally, W doping did not succeed in enhancing the magnetic anisotropy due to formation of other phases. On the other hand, doping by Ir and Re was successful and resulted in magnetic anisotropies that are in agreement with theoretical predictions. In particular, doping by 2.5~at.\% of Re on the Fe/Co site shows a magnetocrystalline anisotropy energy which is increased by 50\% compared to its parent (Fe0.7_{0.7}Co0.3_{0.3})2_2B compound, making this system interesting, for example, in the context of permanent magnet replacement materials or in other areas where a large magnetic anisotropy is of importance.Comment: 15 pages 17 figure
    corecore