235 research outputs found

    Inflation and Eternal Inflation

    Get PDF
    The basic workings of inflationary models are summarized, along with the arguments that strongly suggest that our universe is the product of inflation. The mechanisms that lead to eternal inflation in both new and chaotic models are described. Although the infinity of pocket universes produced by eternal inflation are unobservable, it is argued that eternal inflation has real consequences in terms of the way that predictions are extracted from theoretical models. The ambiguities in defining probabilities in eternally inflating spacetimes are reviewed, with emphasis on the youngness paradox that results from a synchronous gauge regularization technique. Vilenkin's proposal for avoiding these problems is also discussed.Comment: 27 pages, including 5 figures, LaTeX (elsart macros for Physics Reports, included). To be published in the David Schramm Memorial Volume of Physics Report

    Large-Q^2 behavior of the pion electromagnetic form factor

    Get PDF
    We study the large-Q^2 behavior of the electromagnetic form factor of the pion, which is viewed as a quark-antiquark bound state in a (nongauge) quantum field theory. When the pion's Bethe-Salpeter wave function is expanded in O(4) partial waves, it is found that the information needed about the partial-wave amplitudes is their scaling behavior at large momentum and the locations of their poles in the complex J plane. This information is determined by using the operator-product expansion, conformal invariance at short distances, and a regularity property that holds at least in the ladder model. The resulting behavior of the form factor is roughly F(Q^2)~(Q^2)^(-1), with corrections due to anomalous dimensions

    Day-Night and Energy Dependence of MSW Solar Neutrinos for Maximal Mixing

    Get PDF
    It has been stated in the literature that the case of maximal mixing angle for \nu_e leads to no day-night effect for solar neutrinos and an energy independent flux suppression of 1/2. While the case of maximal mixing angle and \Delta m^2 in the MSW range does lead to suppression of the electron neutrinos reaching the earth from the sun by P_S=1/2, the situation is different for neutrinos that have passed through the earth. We make the pedagogical point that, just as with smaller mixing angles, the earth regenerates the |\nu_1> state from the predominantly |\nu_2 > state reaching the earth, leading to coherent interference effects. This regeneration can lead to a day-night effect and an energy dependence of the suppression of solar electron neutrinos, even for the case of maximal mixing. For large mixing angles, the energy dependence of the day-night asymmetry depends heavily on Delta m^2. With a sufficiently sensitive measurement of the day-night effect, this energy dependence could be used to distinguish among the large mixing angle solutions of the solar neutrino problem.Comment: JHEP style, 22 pages, 7 figures. References added, and minor rewordin

    Relativistic Corrections to Nonrelativistic Effective Field Theories

    Get PDF
    In this paper we develop a formalism for studying the nonrelativistic limit of relativistic field theories in a systematic way. By introducing a simple, nonlocal field redefinition, we transform a given relativistic theory, describing a real, self-interacting scalar field, into an equivalent theory, describing a complex scalar field that encodes at each time both the original field and its conjugate momentum. Our low-energy effective theory incorporates relativistic corrections to the kinetic energy as well as the backreaction of fast-oscillating terms on the behavior of the dominant, slowly varying component of the field. Possible applications of our new approach include axion dark matter, though the methods developed here should be applicable to the low-energy limits of other field theories as well.Comment: 31pp. References added, and 3 appendices added, showing (a) how to implement the field redefinition as a canonical transformation, (b) how to develop the effective field theory using a local field redefinition, and (c) how to use a further field redefinition to compare our results with those of Mukaida, Takimoto, and Yamad
    corecore