822 research outputs found
Henri Temianka Correspondence; (guth)
This collection contains material pertaining to the life, career, and activities of Henri Temianka, violin virtuoso, conductor, music teacher, and author. Materials include correspondence, concert programs and flyers, music scores, photographs, and books.https://digitalcommons.chapman.edu/temianka_correspondence/4014/thumbnail.jp
Henri Temianka Correspondence; (guth)
This collection contains material pertaining to the life, career, and activities of Henri Temianka, violin virtuoso, conductor, music teacher, and author. Materials include correspondence, concert programs and flyers, music scores, photographs, and books.https://digitalcommons.chapman.edu/temianka_correspondence/4015/thumbnail.jp
Castles in the clouds: LiDAR for historical study and terrain analysis
Examples of castles and fortresses seen in publicly available LiDAR data by the national mapping agencies in Finland, the Netherlands, Norway, Slovenia, the United Kingdom, and United States demonstrate the value of LiDAR data for understanding military history. The data sets, which include derived grids and the original point clouds with densities from 2–24 points/m², always identify the ground points, generally include LiDAR return intensity values, and sometimes include point classifications that discriminate vegetation and buildings. Grids with 0,5- or onemetre resolution could be created from the highest density point clouds in this study, while grids with one- or two-metre resolution can be created from the lowest density clouds. The digital surface model, which includes everything seen by the sensor, notably ground, buildings, and vegetation, can be created with higher resolution than the bare earth grids. The surface model provides the best visual representation of the castle and its surroundings. Viewed in interactive 3D, the data allows familiarisation with the landscape. Optimal displays depend on the desired scale and the terrain characteristics, but hillshade or shaded reflectance maps, reverse greyscale slope maps, and openness maps all work effectively. Further analysis may include functions such as viewsheds, which enhance the understanding of key terrain
Maximum likelihood analysis of systematic errors in interferometric observations of the cosmic microwave background
We investigate the impact of instrumental systematic errors in
interferometric measurements of the cosmic microwave background (CMB)
temperature and polarization power spectra. We simulate interferometric CMB
observations to generate mock visibilities and estimate power spectra using the
statistically optimal maximum likelihood technique. We define a quadratic error
measure to determine allowable levels of systematic error that do not induce
power spectrum errors beyond a given tolerance. As an example, in this study we
focus on differential pointing errors. The effects of other systematics can be
simulated by this pipeline in a straightforward manner. We find that, in order
to accurately recover the underlying B-modes for r=0.01 at 28<l<384,
Gaussian-distributed pointing errors must be controlled to 0.7^\circ rms for an
interferometer with an antenna configuration similar to QUBIC, in agreement
with analytical estimates. Only the statistical uncertainty for 28<l<88 would
be changed at ~10% level. With the same instrumental configuration, we find the
pointing errors would slightly bias the 2-\sigma upper limit of the
tensor-to-scalar ratio r by ~10%. We also show that the impact of pointing
errors on the TB and EB measurements is negligibly small.Comment: 10 pages, 4 figures, accepted for publication in ApJS. Includes
improvements in clarity of presentation and Fig.4 added, in response to
refere
Primordial perturbations in a non singular bouncing universe model
We construct a simple non singular cosmological model in which the currently
observed expansion phase was preceded by a contraction. This is achieved, in
the framework of pure general relativity, by means of a radiation fluid and a
free scalar field having negative energy. We calculate the power spectrum of
the scalar perturbations that are produced in such a bouncing model and find
that, under the assumption of initial vacuum state for the quantum field
associated with the hydrodynamical perturbation, this leads to a spectral index
n=-1. The matching conditions applying to this bouncing model are derived and
shown to be different from those in the case of a sharp transition. We find
that if our bounce transition can be smoothly connected to a slowly contracting
phase, then the resulting power spectrum will be scale invariant.Comment: 11 pages, RevTeX 4, 8 figures, submitted to Phys. Rev.
Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition.
Great progress has been made in addressing global undernutrition over the past several decades, in part because of large increases in food production from agricultural expansion and intensification. Food systems, however, face continued increases in demand and growing environmental pressures. Most prominently, human-caused climate change will influence the quality and quantity of food we produce and our ability to distribute it equitably. Our capacity to ensure food security and nutritional adequacy in the face of rapidly changing biophysical conditions will be a major determinant of the next century's global burden of disease. In this article, we review the main pathways by which climate change may affect our food production systems-agriculture, fisheries, and livestock-as well as the socioeconomic forces that may influence equitable distribution
Peaks above the Harrison-Zel'dovich spectrum due to the Quark-Gluon to Hadron Transition
The quark-gluon to hadron transition affects the evolution of cosmological
perturbations. If the phase transition is first order, the sound speed vanishes
during the transition, and density perturbations fall freely. This distorts the
primordial Harrison-Zel'dovich spectrum of density fluctuations below the
Hubble scale at the transition. Peaks are produced, which grow at most linearly
in wavenumber, both for the hadron-photon-lepton fluid and for cold dark
matter. For cold dark matter which is kinetically decoupled well before the QCD
transition clumps of masses below are produced.Comment: Extended version, including evolution of density perturbations for a
bag model and for a lattice QCD fit (3 new figures). Spectrum for bag model
(old figure) is available in astro-ph/9611186. 9 pages RevTeX, uses epsf.sty,
3 PS figure
The Inflaton and Time in the Matter-Gravity System
The emergence of time in the matter-gravity system is addressed within the
context of the inflationary paradigm. A quantum minisuperspace-homogeneous
minimally coupled inflaton system is studied with suitable initial conditions
leading to inflation and the system is approximately solved in the limit for
large scale factor. Subsequently normal matter (either non homogeneous inflaton
modes or lighter matter) is introduced as a perturbation and it is seen that
its presence requires the coarse averaging of a gravitational wave function
(which oscillates at trans-Planckian frequencies) having suitable initial
conditions. Such a wave function, which is common for all types of normal
matter, is associated with a ``time density'' in the sense that its modulus is
related to the amount of time spent in a given interval (or the rate of flow of
time). One is then finally led to an effective evolution equation (Schroedinger
Schwinger-Tomonaga) for ``normal'' matter. An analogy with the emergence of a
temperature in statistical mechanics is also pointed out.Comment: 14 pages, late
Passing through the bounce in the ekpyrotic models
By considering a simplified but exact model for realizing the ekpyrotic
scenario, we clarify various assumptions that have been used in the literature.
In particular, we discuss the new ekpyrotic prescription for passing the
perturbations through the singularity which we show to provide a spectrum
depending on a non physical normalization function. We also show that this
prescription does not reproduce the exact result for a sharp transition. Then,
more generally, we demonstrate that, in the only case where a bounce can be
obtained in Einstein General Relativity without facing singularities and/or
violation of the standard energy conditions, the bounce cannot be made
arbitrarily short. This contrasts with the standard (inflationary) situation
where the transition between two eras with different values of the equation of
state can be considered as instantaneous. We then argue that the usually
conserved quantities are not constant on a typical bounce time scale. Finally,
we also examine the case of a test scalar field (or gravitational waves) where
similar results are obtained. We conclude that the full dynamical equations of
the underlying theory should be solved in a non singular case before any
conclusion can be drawn.Comment: 17 pages, ReVTeX 4, 13 figures, minor corrections, conclusions
unchange
- …
