8 research outputs found

    Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae

    Get PDF
    In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid β-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the cytosol by the malate/oxaloacetate shuttle. The ultimate step in lysine biosynthesis, the NAD(+)-dependent dehydrogenation of saccharopine to lysine, is another NAD(+)-dependent reaction performed inside peroxisomes. We have found that in glucose grown cells, both the malate/oxaloacetate shuttle and a glycerol-3-phosphate dehydrogenase 1(Gpd1p)-dependent shuttle are able to maintain the intraperoxisomal redox balance. Single mutants in MDH3 or GPD1 grow on lysine-deficient medium, but an mdh3/gpd1Δ double mutant accumulates saccharopine and displays lysine bradytrophy. Lysine biosynthesis is restored when saccharopine dehydrogenase is mislocalised to the cytosol in mdh3/gpd1Δ cells. We conclude that the availability of intraperoxisomal NAD(+) required for saccharopine dehydrogenase activity can be sustained by both shuttles. The extent to which each of these shuttles contributes to the intraperoxisomal redox balance may depend on the growth medium. We propose that the presence of multiple peroxisomal redox shuttles allows eukaryotic cells to maintain the peroxisomal redox status under different metabolic conditions

    Differential Trypanosome Surface Coat Regulation by a CCCH Protein That Co-Associates with procyclin mRNA cis-Elements

    Get PDF
    The genome of Trypanosoma brucei is unusual in being regulated almost entirely at the post-transcriptional level. In terms of regulation, the best-studied genes are procyclins, which encode a family of major surface GPI-anchored glycoproteins (EP1, EP2, EP3, GPEET) that show differential expression in the parasite's tsetse-fly vector. Although procyclin mRNA cis-regulatory sequences have provided the paradigm for post-transcriptional control in kinetoplastid parasites, trans-acting regulators of procyclin mRNAs are unidentified, despite intensive effort over 15 years. Here we identify the developmental regulator, TbZFP3, a CCCH-class predicted RNA binding protein, as an isoform-specific regulator of Procyclin surface coat expression in trypanosomes. We demonstrate (i) that endogenous TbZFP3 shows sequence-specific co-precipitation of EP1 and GPEET, but not EP2 and EP3, procyclin mRNA isoforms, (ii) that ectopic overexpression of TbZFP3 does not perturb the mRNA abundance of procyclin transcripts, but rather that (iii) their protein expression is regulated in an isoform-specific manner, as evidenced by mass spectrometric analysis of the Procyclin expression signature in the transgenic cell lines. The TbZFP3 mRNA-protein complex (TbZFP3mRNP) is identified as a trans-regulator of differential surface protein expression in trypanosomes. Moreover, its sequence-specific interactions with procyclin mRNAs are compatible with long-established predictions for Procyclin regulation. Combined with the known association of TbZFP3 with the translational apparatus, this study provides a long-sought missing link between surface protein cis-regulatory signals and the gene expression machinery in trypanosomes. © 2009 Walrad et al

    Triacylglycerol storage in lipid droplets in procyclic Trypanosoma brucei

    Get PDF
    Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG) content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. beta-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFE alpha 1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFE alpha 1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFE alpha 1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Delta tfe alpha 1/Delta tfe alpha 1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Delta tfe alpha 1/Delta tfe alpha 1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse

    Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania

    No full text
    In most eukaryotes, sphingolipids (SLs) are critical membrane components and signaling molecules. However, mutants of the trypanosomatid protozoan Leishmania lacking serine palmitoyltransferase (spt2(−)) and SLs grow well, although they are defective in stationary phase differentiation and virulence. Similar phenotypes were observed in sphingolipid (SL) mutant lacking the degradatory enzyme sphingosine 1-phosphate lyase (spl(−)). This epistatic interaction suggested that a metabolite downstream of SLs was responsible. Here we show that unlike other organisms, the Leishmania SL pathway has evolved to be the major route for ethanolamine (EtN) synthesis, as EtN supplementation completely reversed the viability and differentiation defects of both mutants. Thus Leishmania has undergone two major metabolic shifts: first in de-emphasizing the metabolic roles of SLs themselves in growth, signaling, and maintenance of membrane microdomains, which may arise from the unique combination of abundant parasite lipids; Second, freed of typical SL functional constraints and a lack of alternative routes to produce EtN, Leishmania redirected SL metabolism toward bulk EtN synthesis. Our results thus reveal a striking example of remodeling of the SL metabolic pathway in Leishmania

    Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    No full text

    Drug targets in Leishmania

    Get PDF
    Leishmaniasis is a major public health problem and till date there are no effective vaccines available. The control strategy relies solely on chemotherapy of the infected people. However, the present repertoire of drugs is limited and increasing resistance towards them has posed a major concern. The first step in drug discovery is to identify a suitable drug target. The genome sequences of Leishmania major and Leishmania infantum has revealed immense amount of information and has given the opportunity to identify novel drug targets that are unique to these parasites. Utilization of this information in order to come up with a candidate drug molecule requires combining all the technology and using a multi-disciplinary approach, right from characterizing the target protein to high throughput screening of compounds. Leishmania belonging to the order kinetoplastidae emerges from the ancient eukaryotic lineages. They are quite diverse from their mammalian hosts and there are several cellular processes that we are getting to know of, which exist distinctly in these parasites. In this review, we discuss some of the metabolic pathways that are essential and could be used as potential drug targets in Leishmania
    corecore