2,085 research outputs found
Hamiltonian Frenet-Serret dynamics
The Hamiltonian formulation of the dynamics of a relativistic particle
described by a higher-derivative action that depends both on the first and the
second Frenet-Serret curvatures is considered from a geometrical perspective.
We demonstrate how reparametrization covariant dynamical variables and their
projections onto the Frenet-Serret frame can be exploited to provide not only a
significant simplification of but also novel insights into the canonical
analysis. The constraint algebra and the Hamiltonian equations of motion are
written down and a geometrical interpretation is provided for the canonical
variables.Comment: Latex file, 14 pages, no figures. Revised version to appear in Class.
Quant. Gra
Deformations of extended objects with edges
We present a manifestly gauge covariant description of fluctuations of a
relativistic extended object described by the Dirac-Nambu-Goto action with
Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas
physical fluctuations of the bulk lie normal to its worldsheet, those on the
edge possess an additional component directed into the bulk. These fluctuations
couple in a non-trivial way involving the underlying geometrical structures
associated with the worldsheet of the object and of its edge. We illustrate the
formalism using as an example a string with massive point particles attached to
its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5
Covariant perturbations of domain walls in curved spacetime
A manifestly covariant equation is derived to describe the perturbations in a
domain wall on a given background spacetime. This generalizes recent work on
domain walls in Minkowski space and introduces a framework for examining the
stability of relativistic bubbles in curved spacetimes.Comment: 15 pages,ICN-UNAM-93-0
Axially symmetric membranes with polar tethers
Axially symmetric equilibrium configurations of the conformally invariant
Willmore energy are shown to satisfy an equation that is two orders lower in
derivatives of the embedding functions than the equilibrium shape equation, not
one as would be expected on the basis of axial symmetry. Modulo a translation
along the axis, this equation involves a single free parameter c.If c\ne 0, a
geometry with spherical topology will possess curvature singularities at its
poles. The physical origin of the singularity is identified by examining the
Noether charge associated with the translational invariance of the energy; it
is consistent with an external axial force acting at the poles. A one-parameter
family of exact solutions displaying a discocyte to stomatocyte transition is
described.Comment: 13 pages, extended and revised version of Non-local sine-Gordon
equation for the shape of axi-symmetric membrane
Force dipoles and stable local defects on fluid vesicles
An exact description is provided of an almost spherical fluid vesicle with a
fixed area and a fixed enclosed volume locally deformed by external normal
forces bringing two nearby points on the surface together symmetrically. The
conformal invariance of the two-dimensional bending energy is used to identify
the distribution of energy as well as the stress established in the vesicle.
While these states are local minima of the energy, this energy is degenerate;
there is a zero mode in the energy fluctuation spectrum, associated with area
and volume preserving conformal transformations, which breaks the symmetry
between the two points. The volume constraint fixes the distance , measured
along the surface, between the two points; if it is relaxed, a second zero mode
appears, reflecting the independence of the energy on ; in the absence of
this constraint a pathway opens for the membrane to slip out of the defect.
Logarithmic curvature singularities in the surface geometry at the points of
contact signal the presence of external forces. The magnitude of these forces
varies inversely with and so diverges as the points merge; the
corresponding torques vanish in these defects. The geometry behaves near each
of the singularities as a biharmonic monopole, in the region between them as a
surface of constant mean curvature, and in distant regions as a biharmonic
quadrupole. Comparison of the distribution of stress with the quadratic
approximation in the height functions points to shortcomings of the latter
representation. Radial tension is accompanied by lateral compression, both near
the singularities and far away, with a crossover from tension to compression
occurring in the region between them.Comment: 26 pages, 10 figure
A New Anomaly-Free Gauged Supergravity in Six Dimensions
We present a new anomaly-free gauged N=1 supergravity model in six
dimensions. The gauge group is E_7xG_2xU(1)_R, with all hyperinos transforming
in the product representation {56,14). The theory admits monopole
compactifications to R^4xS^2, leading to D=4 effective theories with broken
supersymmetry and massless fermions.Comment: 9 pages, RevTeX
Helfrich-Canham bending energy as a constrained non-linear sigma model
The Helfrich-Canham bending energy is identified with a non-linear sigma
model for a unit vector. The identification, however, is dependent on one
additional constraint: that the unit vector be constrained to lie orthogonal to
the surface. The presence of this constraint adds a source to the divergence of
the stress tensor for this vector so that it is not conserved. The stress
tensor which is conserved is identified and its conservation shown to reproduce
the correct shape equation.Comment: 5 page
Impact of maximum back-EMF limits on the performance characteristics of interior permanent magnet synchronous machines
Interior permanent magnet (IPM) synchronous machines are vulnerable to uncontrolled generator (UCG) faults at high speed that can damage the inverter. One approach to reducing this risk is to impose limits on the maximum machine back-EMF voltage at top speed. This paper presents the results of a comparative design study that clarifies the nature and extent of the penalties imposed on the IPM machine metrics and performance characteristics as a result of imposing progressively tighter values of back-EMF voltage limits. As an alternative to limiting back-EMF and penalizing machine designs, this paper also investigates the effectiveness of the system-side protection approach to the same UCG fault problem.Seok-hee Han, Thomas M. Jahns, Metin Aydin, Mustafa K. Guven, Wen L. Soon
Chern-Simons theory and three-dimensional surfaces
There are two natural Chern-Simons theories associated with the embedding of
a three-dimensional surface in Euclidean space; one is constructed using the
induced metric connection -- it involves only the intrinsic geometry, the other
is extrinsic and uses the connection associated with the gauging of normal
rotations. As such, the two theories appear to describe very different aspects
of the surface geometry. Remarkably, at a classical level, they are equivalent.
In particular, it will be shown that their stress tensors differ only by a null
contribution. Their Euler-Lagrange equations provide identical constraints on
the normal curvature. A new identity for the Cotton tensor is associated with
the triviality of the Chern-Simons theory for embedded hypersurfaces implied by
this equivalence. The corresponding null surface stress capturing this
information will be constructed explicitly.Comment: 10 pages, unnecessary details removed, typos fixed, references adde
Observation of negative refraction and negative phase velocity in left-handed metamaterials
Cataloged from PDF version of article.We report the transmission characteristics of a two-dimensional (2D) composite metamaterial (CMM) structure in free space. At the frequencies where left-handed transmission takes place, we experimentally confirmed that the CMM structure has effective negative refractive index. Phase shift between consecutive numbers of layers of CMM is measured and phase velocity is shown to be negative at the relevant frequency range. Refractive index values obtained from the refraction experiments and the phase measurements are in good agreement. (C) 2005 American Institute of Physics
- …
