161 research outputs found

    Antimicrobial Activity and Resistance: Influencing Factors

    Get PDF
    Rational use of antibiotic is the key approach to improve the antibiotic performance and tackling of the antimicrobial resistance. The efficacy of antimicrobials are influenced by many factors: (1) bacterial status (susceptibility and resistance, tolerance, persistence, biofilm) and inoculum size; (2) antimicrobial concentrations [mutant selection window (MSW) and sub-inhibitory concentration]; (3) host factors (serum effect and impact on gut micro-biota). Additional understandings regarding the linkage between antimicrobial usages, bacterial status and host response offers us new insights and encourage the struggle for the designing of antimicrobial treatment regimens that reaching better clinical outcome and minimizing the emergence of resistance at the same time

    Adaptive Surface Normal Constraint for Geometric Estimation from Monocular Images

    Full text link
    We introduce a novel approach to learn geometries such as depth and surface normal from images while incorporating geometric context. The difficulty of reliably capturing geometric context in existing methods impedes their ability to accurately enforce the consistency between the different geometric properties, thereby leading to a bottleneck of geometric estimation quality. We therefore propose the Adaptive Surface Normal (ASN) constraint, a simple yet efficient method. Our approach extracts geometric context that encodes the geometric variations present in the input image and correlates depth estimation with geometric constraints. By dynamically determining reliable local geometry from randomly sampled candidates, we establish a surface normal constraint, where the validity of these candidates is evaluated using the geometric context. Furthermore, our normal estimation leverages the geometric context to prioritize regions that exhibit significant geometric variations, which makes the predicted normals accurately capture intricate and detailed geometric information. Through the integration of geometric context, our method unifies depth and surface normal estimations within a cohesive framework, which enables the generation of high-quality 3D geometry from images. We validate the superiority of our approach over state-of-the-art methods through extensive evaluations and comparisons on diverse indoor and outdoor datasets, showcasing its efficiency and robustness.Comment: Accepted by TPAMI. arXiv admin note: substantial text overlap with arXiv:2103.1548

    Susceptibility Breakpoint for Enrofloxacin against Swine Salmonella spp

    Full text link
    ABSTRACT Susceptibility breakpoints are crucial for prudent use of antimicrobials. This study has developed the first susceptibility breakpoint (MIC ≤ 0.25 μg/ml) for enrofloxacin against swine Salmonella spp. based on wild-type cutoff (CO WT ) and pharmacokinetic-pharmacodynamic (PK-PD) cutoff (CO PD ) values, consequently providing a criterion for susceptibility testing and clinical usage of enrofloxacin. </jats:p

    The Involvement of the Cas9 Gene in Virulence of Campylobacter jejuni

    Get PDF
    Campylobacter jejuni is considered as the leading cause of gastroenteritis all over the world. This bacterium has the CRISPR–cas9 system, which is used as a gene editing technique in different organisms. However, its role in bacterial virulence has just been discovered; that discovery, however, is just the tip of the iceberg. The purpose of this study is to find out the relationship between cas9 and virulence both phenotypically and genotypically in C. jejuni NCTC11168. Understanding both aspects of this relationship allows for a much deeper understanding of the mechanism of bacterial pathogenesis. The present study determined virulence in wild and mutant strains by observing biofilm formation, motility, adhesion and invasion, intracellular survivability, and cytotoxin production, followed by the transcriptomic analysis of both strains. The comparative gene expression profile of wild and mutant strains was determined on the basis of De-Seq transcriptomic analysis, which showed that the cas9 gene is involved in enhancing virulence. Differential gene expression analysis revealed that multiple pathways were involved in virulence, regulated by the CRISPR-cas9 system. Our findings help in understanding the potential role of cas9 in regulating the other virulence associated genes in C. jejuni NCTC11168. The findings of this study provide critical information about cas9's potential involvement in enhancing the virulence of C. jejuni, which is a major public health threat

    Development of a Novel Genetically Modified Bioluminescent Bacteria-Based Assay for Detection of Fluoroquinolones in Animal Derived Foods (Abstract)

    Full text link

    Identification and characterization of a novel spore-associated subtilase from Thermoactinomyces sp. CDF

    Full text link
    A gene encoding a spore-associated subtilase, designated protease CDF, was cloned fromThermoactinomycessp. CDF and expressed inEscherichia coli. The enzyme gene is translated as a proform consisting of a 94 aa propeptide and a 283 aa mature protease domain. Phylogenetic analysis revealed that this enzyme belonged to the subtilisin family, but could not be grouped into any of its six known subfamilies. The mature protease CDF has an unusually high content of charged residues, which are mainly distributed on the enzyme surface. The recombinant proform of protease CDF formed inclusion bodies, but could be efficiently converted to the mature enzyme when the inclusion bodies were dissolved in alkaline buffers. The proform underwent a two-step maturation process, wherein the N-terminal part (85 residues) of the propeptide was autoprocessed intramolecularly, and the remaining 9-residue peptide was further processed intermolecularly. Protease CDF exhibited optimal proteolytic activity at 50–55 °C and pH 10.5–11.0. The enzyme was stable under high-pH conditions (pH 11.0–12.0), and NaCl could stabilize the enzyme at lower pH values. In addition, the enzyme was not dependent on calcium for either maturation or stability. By immunoblot analysis, protease CDF was found to be associated with spores, and could be extracted from the spores with 2 M KCl and alkaline buffers without damaging the coat layer, demonstrating that the protease CDF is located on the surface of the spore coat.</jats:p

    Inhibitors targeting on cell wall biosynthesis pathway of MRSA

    Full text link
    corecore