146 research outputs found
Electromagnetic trapping of chiral molecules: orientational effects of the irradiating beam
The photonic interaction generally responsible for the electromagnetic trapping of molecules is forward-Rayleigh scattering, a process that is mediated by transition electric dipoles connecting the ground electronic state and virtual excited states. Higher order electric and magnetic multipole contributions to the scattering amplitude are usually negligible. However, on consideration of chiral discrimination effects (in which an input light of left-handed circular polarization can present different observables compared to right-handed polarization, or molecules of opposite enantiomeric form respond differently to a set circular polarization), the mechanism must be extended to specifically accommodate transition magnetic dipoles. Moreover, it is important to account for the fact that chiral molecules are necessarily non-spherical, so that their interactions with a laser beam will have an orientational dependence. Using quantum electrodynamics, this article quantifies the extent of the energetic discrimination that arises when chiral molecules are optically trapped, placing particular emphasis on the orientational effects of the trapping beam. An in-depth description of the intricate ensemble-weighted method used to incorporate the latter is presented. It is thus shown that, when a mixture of molecular enantiomers is irradiated by a continuous beam of circularly polarized light, a difference arises in the relative rates of migration of each enantiomer in and out of the most intense regions of the beam. In consequence, optical trapping can be used as a means of achieving enantiomer separation
Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface
We report on two orders of magnitude reduction in the fluorescence lifetime
when a single molecule placed in a thin film is surrounded by two gold
nanospheres across the film interface. By attaching one of the gold particles
to the end of a glass fiber tip, we could control the modification of the
molecular fluorescence at will. We find a good agreement between our
experimental data and the outcome of numerical calculations
Plasmonic atoms and plasmonic molecules
The proposed paradigm of plasmonic atoms and plasmonic molecules allows one
to describe and predict the strongly localized plasmonic oscillations in the
clusters of nanoparticles and some other nanostructures in uniform way.
Strongly localized plasmonic molecules near the contacting surfaces might
become the fundamental elements (by analogy with Lego bricks) for a
construction of fully integrated opto-electronic nanodevices of any complexity
and scale of integration.Comment: 30 pages, 16 figure
Laser optical separation of chiral molecules
The optical trapping of molecules with an off-resonant laser beam involves a forward-Rayleigh scattering mechanism. It is shown that discriminatory effects arise on irradiating chiral molecules with circularly polarized light; the complete representation requires ensemble-weighted averaging to account for the influence of the trapping beam on the distribution of molecular orientations. Results of general application enable comparisons to be drawn between the results for two limits of the input laser intensity. It emerges that, in a racemic mixture, there is a differential driving force whose effect, at high laser intensities, is to produce differing local concentrations of the two enantiomers
Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres
Photoacoustic tomography (PAT) also referred to as optoacoustic tomography (OAT) is a hybrid imaging modality that employs nonionizing optical radiation and ultrasonic detection. Here, we describe the application of a new class of optical contrast agents based on mesoscopic hollow gold nanospheres (HAuNS) to PAT. HAuNS are ∼40 nm in diameter with a hollow interior and consist of a thin gold wall. They display strong resonance absorption tuned to the near-infrared (NIR) range, with an absorption peak at 800 nm, whose photoacoustic efficiency is significantly greater than that of blood. Following surface conjugation with thiolated poly(ethylene glycol), the pegylated HAuNS (PEG-HAuNS) had distribution and elimination half-lives of 1.38 ± 0.38 and 71.82 ± 30.46 h, respectively. Compared with PAT images based on the intrinsic optical contrast in nude mice, the PAT images acquired within 2 h after intravenous administration of PEG-HAuNS showed the brain vasculature with greater clarity and detail. The image depicted brain blood vessels as small as ∼100 μm in diameter using PEG-HAuNS as contrast agents. Preliminary results showed no acute toxicity to the liver, spleen, or kidneys in mice following a single imaging dose of PEG-HAuNS. Our results indicate that PEG-HAuNS are promising contrast agents for PAT, with high spatial resolution and enhanced sensitivity
Spontaneous emission of an atom placed near a nanobelt of elliptical cross-section
Spontaneous emission of an atom (molecule) placed near a nanocylinder of
elliptical cross-section of an arbitrary composition is studied. The analytical
expressions have been obtained for the radiative and nonradiative channels of
spontaneous decay and investigated in details.Comment: 35 pages, 11 figure
- …
