374 research outputs found
Critical Analysis of Primary Literature in a Master's-Level Class: Effects on Self-Efficacy and Science-Process Skills.
The ability to think analytically and creatively is crucial for success in the modern workforce, particularly for graduate students, who often aim to become physicians or researchers. Analysis of the primary literature provides an excellent opportunity to practice these skills. We describe a course that includes a structured analysis of four research papers from diverse fields of biology and group exercises in proposing experiments that would follow up on these papers. To facilitate a critical approach to primary literature, we included a paper with questionable data interpretation and two papers investigating the same biological question yet reaching opposite conclusions. We report a significant increase in students' self-efficacy in analyzing data from research papers, evaluating authors' conclusions, and designing experiments. Using our science-process skills test, we observe a statistically significant increase in students' ability to propose an experiment that matches the goal of investigation. We also detect gains in interpretation of controls and quantitative analysis of data. No statistically significant changes were observed in questions that tested the skills of interpretation, inference, and evaluation
Self-consistent Seeding of the Interchange Instability in Dipolarization Fronts
We report a 3D magnetohydrodynamics simulation that studies the formation of
dipolarization fronts during magnetotail reconnection. The crucial new feature
uncovered in the present 3D simulation is that the process of reconnection
produces flux ropes developing within the reconnection region. These flux ropes
are unstable to the kink mode and introduce a spontaneous structure in the
dawn-dusk direction. The dipolarization fronts forming downstream of
reconnection are strongly affected by the kinking ropes. At the fronts, a
density gradient is present with opposite direction to that of the acceleration
field and leads to an interchange instability. We present evidence for a causal
link where the perturbations of the kinking flux ropes with their natural and
well defined scales drive and select the scales for the interchange mode in the
dipolarization fronts. The results of the simulation are validated against
measured structures observed by the Themis mission.Comment: 4 figures, to appear on Geophys. Res. Let
Intermittency in Two-Dimensional Turbulence with Drag
We consider the enstrophy cascade in forced two-dimensional turbulence with a
linear drag force. In the presence of linear drag, the energy wavenumber
spectrum drops with a power law faster than in the case without drag, and the
vorticity field becomes intermittent, as shown by the anomalous scaling of the
vorticity structure functions. Using a previous theory, we compare numerical
simulation results with predictions for the power law exponent of the energy
wavenumber spectrum and the scaling exponents of the vorticity structure
functions obtained in terms of the distribution of finite time
Lyapunov exponents. We also study, both by numerical experiment and theoretical
analysis, the multifractal structure of the viscous enstrophy dissipation in
terms of its R\'{e}nyi dimension spectrum and singularity spectrum
. We derive a relation between and , and discuss
its relevance to a version of the refined similarity hypothesis. In addition,
we obtain and compare theoretically and numerically derived results for the
dependence on separation of the probability distribution of
\delta_{\V{r}}\omega, the difference between the vorticity at two points
separated by a distance . Our numerical simulations are done on a grid.Comment: 18 pages, 17 figure
Ionizing wave via high-power HF acceleration
Recent ionospheric modification experiments with the 3.6 MW transmitter at
the High Frequency Active Auroral Research Program (HAARP) facility in Alaska
led to discovery of artificial ionization descending from the nominal
interaction altitude in the background F-region ionosphere by ~60 km. This
paper presents a physical model of an ionizing wavefront created by
suprathermal electrons accelerated by the HF-excited plasma turbulence
ELM triggering conditions for the integrated modeling of H-mode plasmas
Recent advances in the integrated modeling of ELMy H-mode plasmas are
presented. A model for the H-mode pedestal and for the triggering of ELMs
predicts the height, width, and shape of the H-mode pedestal and the frequency
and width of ELMs. Formation of the pedestal and the L-H transition is the
direct result of ExB flow shear suppression of anomalous transport. The
periodic ELM crashes are triggered by either the ballooning or peeling MHD
instabilities. The BALOO, DCON, and ELITE ideal MHD stability codes are used to
derive a new parametric expression for the peeling-ballooning threshold. The
new dependence for the peeling-ballooning threshold is implemented in the ASTRA
transport code. Results of integrated modeling of DIII-D like discharges are
presented and compared with experimental observations. The results from the
ideal MHD stability codes are compared with results from the resistive MHD
stability code NIMROD.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Condensation of microturbulence-generated shear flows into global modes
In full flux-surface computer studies of tokamak edge turbulence, a spectrum
of shear flows is found to control the turbulence level and not just the
conventional (0,0)-mode flows. Flux tube domains too small for the large
poloidal scale lengths of the continuous spectrum tend to overestimate the
flows, and thus underestimate the transport. It is shown analytically and
numerically that under certain conditions dominant (0,0)-mode flows independent
of the domain size develop, essentially through Bose-Einstein condensation of
the shear flows.Comment: 5 pages, 4 figure
Low-frequency waves in HF heating of the ionosphere
Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation
- …
