12 research outputs found

    L-citrulline Prevents Alveolar and Vascular Derangement in a Rat Model of Moderate Hyperoxia-induced Lung Injury

    No full text
    BackgroundModerate normobaric hyperoxia causes alveolar and vascular lung derangement in the newborn rat. Endogenous nitric oxide (NO), which promotes lung growth, is produced from the metabolism of L-arginine to L-citrulline in endothelial cells. We investigated whether administering L-citrulline by raising the serum levels of L-arginine and enhancing NO endogenous synthesis attenuates moderate hyperoxia-induced lung injury.MethodsNewborn rats were exposed to FiO(2) = 0.6 or room air for 14 days to induce lung derangement and then were administered L-citrulline or a vehicle (sham). Lung histopathology was studied with morphometric features. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected for analysis. Lung vascular endothelial growth factor (VEGF), nitric oxide synthase (eNOS), and matrix metalloproteinase 2 (MMP2) gene and protein expressions were assessed.ResultsSerum L-arginine rose in the L-citr + hyperoxia group (p = 0.05), as well as the Von Willebrand factor stained vessels count (p = 0.0008). Lung VEGF immune staining, localized on endothelial cells, was weaker in the sections under hyperoxia than the L-citr + hyperoxia and room air groups. This pattern was comparable with the VEGF gene and protein expression profiles. Mean alveolar size increased in the untreated hyperoxia and sham-treated groups compared with the groups reared in room air or treated with L-citrulline under exposure to hyperoxia (p = 0.0001). Lung VEGF and eNOS increased in the L-citrulline-treated rats, though this treatment did not change MMP2 gene expression but regulated the MMP2 active protein, which rose in BALF (p = 0.003).ConclusionsWe conclude that administering L: -citrulline proved effective in improving alveolar and vascular growth in a model of oxygen-induced pulmonary damage, suggesting better lung growth and matrix regulation than in untreated groups

    From guide to target: molecular insights into eukaryotic RNA-interference machinery

    No full text
    Since its relatively recent discovery, RNA interference (RNAi) has emerged as a potent, specific and ubiquitous means of gene regulation. Through a number of pathways that are conserved in eukaryotes from yeast to humans, small noncoding RNAs direct molecular machinery to silence gene expression. In this Review, we focus on mechanisms and structures that govern RNA silencing in higher organisms. In addition to highlighting recent advances, we discuss parallels and differences among RNAi pathways. Together, the studies reviewed herein reveal the versatility and programmability of RNA-induced silencing complexes and emphasize the importance of both upstream biogenesis and downstream silencing factors
    corecore