159 research outputs found
Pattern formation for reactive species undergoing anisotropic diffusion
Turing instabilities for a two species reaction-diffusion systems is studied
under anisotropic diffusion. More specifically, the diffusion constants which
characterize the ability of the species to relocate in space are direction
sensitive. Under this working hypothesis, the conditions for the onset of the
instability are mathematically derived and numerically validated. Patterns
which closely resemble those obtained in the classical context of isotropic
diffusion, develop when the usual Turing condition is violated, along one of
the two accessible directions of migration. Remarkably, the instability can
also set in when the activator diffuses faster than the inhibitor, along the
direction for which the usual Turing conditions are not matched
Turing patterns in multiplex networks
The theory of patterns formation for a reaction-diffusion system defined on a
multiplex is developed by means of a perturbative approach. The intra-layer
diffusion constants act as small parameter in the expansion and the unperturbed
state coincides with the limiting setting where the multiplex layers are
decoupled. The interaction between adjacent layers can seed the instability of
an homogeneous fixed point, yielding self-organized patterns which are instead
impeded in the limit of decoupled layers. Patterns on individual layers can
also fade away due to cross-talking between layers. Analytical results are
compared to direct simulations
One’s trash is someone else’s treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts
Background Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts’ life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. Results In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. Conclusions Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.Peer reviewe
One’s trash is someone else’s treasure: sequence read archives from Lepidoptera genomes provide material for genome reconstruction of their endosymbionts
Background Maternally inherited bacterial symbionts are extremely widespread in insects. They owe their success to their ability to promote their own transmission through various manipulations of their hosts’ life-histories. Many symbionts however very often go undetected. Consequently, we have only a restricted idea of the true symbiont diversity in insects, which may hinder our understanding of even bigger questions in the field such as the evolution or establishment of symbiosis. Results In this study, we screened publicly available Lepidoptera genomic material for two of the most common insect endosymbionts, namely Wolbachia and Spiroplasma, in 1904 entries, encompassing 106 distinct species. We compared the performance of two screening software, Kraken2 and MetaPhlAn2, to identify the bacterial infections and using a baiting approach we reconstruct endosymbiont genome assemblies. Of the 106 species screened, 20 (19%) and nine (8.5%) were found to be infected with either Wolbachia or Spiroplasma, respectively. Construction of partial symbiotic genomes and phylogenetic analyses suggested the Wolbachia strains from the supergroup B were the most prevalent type of symbionts, while Spiroplasma infections were scarce in the Lepidoptera species screened here. Conclusions Our results indicate that many of the host-symbiont associations remain largely unexplored, with the majority of associations we identify never being recorded before. This highlights the usefulness of public databases to explore the hidden diversity of symbiotic entities, allowing the development of hypotheses regarding host-symbiont associations. The ever-expanding genomic databases provide a diverse databank from which one can characterize and explore the true diversity of symbiotic entities.Peer reviewe
Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation.
Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders
La Cartopartie, une nouvelle forme de balade urbaine déployée par les villes
Une cartopartie est une balade urbaine qui vise à arpenter une zone géographique à plusieurs, afin de produire des données géo-référencées. Cet atelier initié par la communauté OpenStreetMap est actuellement approprié par des collectivités au sein de dispositifs de participation habitante qui mettent en œuvre des technologies numériques : métrologie citoyenne sur la qualité de l’air, sur l’environnement sonore, inventaire d’arbres remarquables, recensement des services d’hyperproximité. Les démarches étudiées dans cet article ont été menées sur les villes de Pornichet, Nantes et Rennes. À travers une analyse croisée, on s’attache à tracer les contours de cette forme de balade urbaine collective « cartopartie » et notamment à montrer comment les acteurs urbains articulent les espaces numériques avec les ateliers présentiels. Enfin on s’intéresse à comment cet ensemble hybride est pratiqué par les participants.A mapping party is a collective urban walk. The aim is to explore collectively an area, to produce geo-referenced data. This workshop, initiated by OpenStreetMap’s community, is currently appropriated by local authorities to include this kind of urban walks in citizen participation dispositifs using digital technologies : citizen metrology on urban air quality, on sound environment, remarkable trees inventory, corner urban services mapping. In this article, we analyse experiences from three cities : Pornichet, Nantes and Rennes. With a cross analysis, we define the edges of a “mapping party“ urban walk typologies.. We present in particular how urban actors link together the digital spaces and face-to-face workshop. Lastly we analyse how this hybrid dispositifs is used by participants
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
- …
