2,115 research outputs found
Photoemission view of electron fractionalization in quasi-one dimensional metal LiMoO
We report Luttinger liquid line shapes better revealed by new angle resolved
photoemission data taken with a much improved angle resolution on a
quasi-1-dimensional metal LiMoO. The new data indicate a
larger spinon velocity than our previous lower resolution data indicated.Comment: submitted to SCES '0
Nearest Labelset Using Double Distances for Multi-label Classification
Multi-label classification is a type of supervised learning where an instance
may belong to multiple labels simultaneously. Predicting each label
independently has been criticized for not exploiting any correlation between
labels. In this paper we propose a novel approach, Nearest Labelset using
Double Distances (NLDD), that predicts the labelset observed in the training
data that minimizes a weighted sum of the distances in both the feature space
and the label space to the new instance. The weights specify the relative
tradeoff between the two distances. The weights are estimated from a binomial
regression of the number of misclassified labels as a function of the two
distances. Model parameters are estimated by maximum likelihood. NLDD only
considers labelsets observed in the training data, thus implicitly taking into
account label dependencies. Experiments on benchmark multi-label data sets show
that the proposed method on average outperforms other well-known approaches in
terms of Hamming loss, 0/1 loss, and multi-label accuracy and ranks second
after ECC on the F-measure
Luttinger liquid ARPES spectra from samples of LiMoO grown by the temperature gradient flux technique
Angle resolved photoemission spectroscopy line shapes measured for
quasi-one-dimensional LiMoO samples grown by a temperature
gradient flux technique are found to show Luttinger liquid behavior, consistent
with all previous data by us and other workers obtained from samples grown by
the electrolyte reduction technique. This result eliminates the sample growth
method as a possible origin of considerable differences in photoemission data
reported in previous studies of LiMoO.Comment: Some text adde
Generalized Spectral Signatures of Electron Fractionalization in Quasi-One and -Two Dimensional Molybdenum Bronzes and Superconducting Cuprates
We establish the quasi-one-dimensional Li purple bronze as a photoemission
paradigm of Luttinger liquid behavior. We also show that generalized signatures
of electron fractionalization are present in the angle resolved photoemission
spectra for quasi-two-dimensional purple bronzes and certain cuprates. An
important component of our analysis for the quasi-two-dimensional systems is
the proposal of a ``melted holon'' scenario for the k-independent background
that accompanies but does not interact with the peaks that disperse to define
the Fermi surface.Comment: 7 pages, 8 figure
Explaining intuitive difficulty judgments by modeling physical effort and risk
The ability to estimate task difficulty is critical for many real-world
decisions such as setting appropriate goals for ourselves or appreciating
others' accomplishments. Here we give a computational account of how humans
judge the difficulty of a range of physical construction tasks (e.g., moving 10
loose blocks from their initial configuration to their target configuration,
such as a vertical tower) by quantifying two key factors that influence
construction difficulty: physical effort and physical risk. Physical effort
captures the minimal work needed to transport all objects to their final
positions, and is computed using a hybrid task-and-motion planner. Physical
risk corresponds to stability of the structure, and is computed using noisy
physics simulations to capture the costs for precision (e.g., attention,
coordination, fine motor movements) required for success. We show that the full
effort-risk model captures human estimates of difficulty and construction time
better than either component alone
16-Month-Olds Rationally Infer Causes of Failed Actions
Sixteen-month-old infants (N = 83) rationally used sparse data about the distribution of outcomes among agents and objects to solve a fundamental inference problem: deciding whether event outcomes are due to themselves or the world. When infants experienced failed outcomes, their causal attributions affected whether they sought help or explored.Templeton Foundation (Award)James S. McDonnell FoundationNational Science Foundation (U.S.) (NSF Faculty Early Career Development Award
- …
