1,114 research outputs found
A first principles simulation of rigid water
We present the results of Car-Parrinello (CP) simulations of water at ambient
conditions and under pressure, using a rigid molecule approximation. Throughout
our calculations, water molecules were maintained at a fixed intramolecular
geometry corresponding to the average structure obtained in fully unconstrained
simulations. This allows us to use larger time steps than those adopted in
ordinary CP simulations of water, and thus to access longer time scales. In the
absence of chemical reactions or dissociation effects, these calculations open
the way to ab initio simulations of aqueous solutions that require timescales
substantially longer than presently feasible (e.g. simulations of hydrophobic
solvation). Our results show that structural properties and diffusion
coefficients obtained with a rigid model are in better agreement with
experiment than those determined with fully flexible simulations. Possible
reasons responsible for this improved agreement are discussed
Star-shaped Local Density of States around Vortices in a Type II Superconductor
The electronic structure of vortices in a type II superconductor is analyzed
within the quasi-classical Eilenberger framework. The possible origin of a
sixfold ``star'' shape of the local density of states, observed by scanning
tunneling microscope experiments on NbSe, is examined in the light of the
three effects; the anisotropic pairing, the vortex lattice, and the anisotropic
density of states at the Fermi surface. Outstanding features of split parallel
rays of this star are well explained in terms of an anisotropic -wave
pairing. This reveals a rich internal electronic structure associated with a
vortex core.Comment: 4 pages, REVTeX, 3 figures available upon reques
Mixed-State Quasiparticle Spectrum for d-wave Superconductors
Controversy concerning the pairing symmetry of high- materials has
motivated an interest in those measurable properties of superconductors for
which qualitative differences exist between the s-wave and d-wave cases. We
report on a comparison between the microscopic electronic properties of d-wave
and s-wave superconductors in the mixed state. Our study is based on
self-consistent numerical solutions of the mean-field Bogoliubov-de Gennes
equations for phenomenological BCS models which have s-wave and d-wave
condensates in the absence of a magnetic field. We discuss differences between
the s-wave and the d-wave local density-of-states, both near and away from
vortex cores. Experimental implications for both scanning-tunneling-microscopy
measurements and specific heat measurements are discussed.Comment: 10 pages, REVTEX3.0, 3 figures available upon reques
Competing Phases, Strong Electron-Phonon Interaction and Superconductivity in Elemental Calcium under High Pressure
The observed "simple cubic" (sc) phase of elemental Ca at room temperature in
the 32-109 GPa range is, from linear response calculations, dynamically
unstable. By comparing first principle calculations of the enthalpy for five
sc-related (non-close-packed) structures, we find that all five structures
compete energetically at room temperature in the 40-90 GPa range, and three do
so in the 100-130 GPa range. Some competing structures below 90 GPa are
dynamically stable, i.e., no imaginary frequency, suggesting that these
sc-derived short-range-order local structures exist locally and can account for
the observed (average) "sc" diffraction pattern. In the dynamically stable
phases below 90 GPa, some low frequency phonon modes are present, contributing
to strong electron-phonon (EP) coupling as well as arising from the strong
coupling. Linear response calculations for two of the structures over 120 GPa
lead to critical temperatures in the 20-25 K range as is observed, and do so
without unusually soft modes.Comment: 8 pages, 6 figures, 1 table, accepted for publication in Phys. Rev.
SO(5) theory of insulating vortex cores in high- materials
We study the fermionic states of the antiferromagnetically ordered vortex
cores predicted to exist in the superconducting phase of the newly proposed
SO(5) model of strongly correlated electrons. Our model calculation gives a
natural explanation of the recent STM measurements on BSCCO, which in
surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur
A Self-Consistent Microscopic Theory of Surface Superconductivity
The electronic structure of the superconducting surface sheath in a type-II
superconductor in magnetic fields is calculated
self-consistently using the Bogoliubov-de Gennes equations. We find that the
pair potential exhibits pronounced Friedel oscillations near the
surface, in marked contrast with the results of Ginzburg-Landau theory. The
role of magnetic edge states is emphasized. The local density of states near
the surface shows a significant depletion near the Fermi energy due to the
development of local superconducting order. We suggest that this structure
could be unveiled by scanning-tunneling microscopy studies performed near the
edge of a superconducting sample.Comment: 12 pages, Revtex 3.0, 3 postscript figures appende
Absence of Dipole Transitions in Vortices of Type II Superconductors
The response of a single vortex to a time dependent field is examined
microscopically and an equation of motion for vortex motion at non-zero
frequencies is derived. Of interest are frequencies near ,
where is the bulk energy gap and is the fermi energy. The low
temperature, clean, extreme type II limit and maintaining of equilibrium with
the lattice are assumed. A simplification occurs for large planar mass
anisotropy. Thus the results may be pertinent to materials such as and
high temperature superconductors. The expected dipole transition between core
states is hidden because of the self consistent nature of the vortex potential.
Instead the vortex itself moves and has a resonance at the frequency of the
transition.Comment: 12 pages, no figure
Local density of states in the vortex lattice in a type II superconductor
Local density of states (LDOS) in the triangular vortex lattice is
investigated based on the quasi-classical Eilenberger theory. We consider the
case of an isotropic s-wave superconductor with the material parameter
appropriate to NbSe_2. At a weak magnetic field, the spatial variation of the
LDOS shows cylindrical structure around a vortex core. On the other hand, at a
high field where the core regions substantially overlap each other, the LDOS is
sixfold star-shaped structure due to the vortex lattice effect. The orientation
of the star coincides with the experimental data of the scanning tunneling
microscopy. That is, the ray of the star extends toward the nearest-neighbor
(next nearest-neighbor) vortex direction at higher (lower) energy.Comment: 10 pages, RevTex, 32 figure
Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach
We present an approach to solid-state electronic-structure calculations based
on the finite-element method. In this method, the basis functions are strictly
local, piecewise polynomials. Because the basis is composed of polynomials, the
method is completely general and its convergence can be controlled
systematically. Because the basis functions are strictly local in real space,
the method allows for variable resolution in real space; produces sparse,
structured matrices, enabling the effective use of iterative solution methods;
and is well suited to parallel implementation. The method thus combines the
significant advantages of both real-space-grid and basis-oriented approaches
and so promises to be particularly well suited for large, accurate ab initio
calculations. We develop the theory of our approach in detail, discuss
advantages and disadvantages, and report initial results, including the first
fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc
A Real-Space Full Multigrid study of the fragmentation of Li11+ clusters
We have studied the fragmentation of Li11+ clusters into the two
experimentally observed products (Li9+,Li2) and (Li10+,Li) The ground state
structures for the two fragmentation channels are found by Molecular Dynamics
Simulated Annealing in the framework of Local Density Functional theory.
Energetics considerations suggest that the fragmentation process is dominated
by non-equilibrium processes. We use a real-space approach to solve the
Kohn-Sham problem, where the Laplacian operator is discretized according to the
Mehrstellen scheme, and take advantage of a Full MultiGrid (FMG) strategy to
accelerate convergence. When applied to isolated clusters we find our FMG
method to be more efficient than state-of-the-art plane wave calculations.Comment: 9 pages + 6 Figures (in gzipped tar file
- …
