7 research outputs found

    Population genetics of wild-type CAG repeats in the Machado-Joseph disease gene in Portugal

    Get PDF
    To gain insights on the molecular mechanisms of mutation that led to the emergence of expanded alleles in the MJD gene, by studying the behavior of wild-type alleles and testing the association of its distribution with the representation of the disease. Methods: The number of CAG motifs in the MJD gene was determined in a representative sample of 1000 unrelated individuals. Associations between the repeat size and the epidemiological representation of MJD were tested. Results: The allelic profi le of the total sample was in the normal range (13–41 repeats), with mode (CAG) 23 . No intermediate alleles were present. Allelic size distribution showed a negative skew. The correlation between the epidemiological representation of MJD in each district and the frequency of small, medium and large normal alleles was not signifi cant. Further correlations performed grouping the districts also failed to produce signifi cant results. Conclusions: The absence of association between the size of the repeats and the representation of MJD demonstrates that prevalence is not an indirect refl ection of the frequency of large normal alleles. Globally the results obtained are in accordance with a model that postulates the occurrence of a few mutations on the basis of most of the MJD cases worldwide

    Branched-chain amino acids in metabolic signalling and insulin resistance

    No full text
    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM

    Promoting Autophagic Clearance: Viable Therapeutic Targets in Alzheimer’s Disease

    No full text
    corecore