6,437 research outputs found
Finite element analysis applied to redesign of submerged entry nozzles for steelmaking
The production of steel by continuous casting is facilitated by the use of refractory hollow-ware components. A critical component in this process is the submerged entry nozzle (SEN). The normal operating conditions of the SEN are arduous, involving large temperature gradients and exposure to mechanical forces arising from the flow of molten steel; experimental development of the components is challenging in so hazardous an environment. The effects of the thermal stress conditions in relation to a well-tried design were therefore simulated using a finite element analysis approach. It was concluded from analyses that failures of the type being experienced are caused by the large temperature gradient within the nozzle. The analyses pointed towards a supported shoulder area of the nozzle being most vulnerable to failure and practical in-service experience confirmed this. As a direct consequence of the investigation, design modifications, incorporating changes to both the internal geometry and to the nature of the intermediate support material, were implemented, thereby substantially reducing the stresses within the Al2O3/graphite ceramic liner. Industrial trials of this modified design established that the component reliability would be significantly improved and the design has now been implemented in series production
Recovering the state sequence of hidden Markov models using mean-field approximations
Inferring the sequence of states from observations is one of the most
fundamental problems in Hidden Markov Models. In statistical physics language,
this problem is equivalent to computing the marginals of a one-dimensional
model with a random external field. While this task can be accomplished through
transfer matrix methods, it becomes quickly intractable when the underlying
state space is large.
This paper develops several low-complexity approximate algorithms to address
this inference problem when the state space becomes large. The new algorithms
are based on various mean-field approximations of the transfer matrix. Their
performances are studied in detail on a simple realistic model for DNA
pyrosequencing.Comment: 43 pages, 41 figure
Design of Strongly Modulating Pulses to Implement Precise Effective Hamiltonians for Quantum Information Processing
We describe a method for improving coherent control through the use of
detailed knowledge of the system's Hamiltonian. Precise unitary transformations
were obtained by strongly modulating the system's dynamics to average out
unwanted evolution. With the aid of numerical search methods, pulsed
irradiation schemes are obtained that perform accurate, arbitrary, selective
gates on multi-qubit systems. Compared to low power selective pulses, which
cannot average out all unwanted evolution, these pulses are substantially
shorter in time, thereby reducing the effects of relaxation. Liquid-state NMR
techniques on homonuclear spin systems are used to demonstrate the accuracy of
these gates both in simulation and experiment. Simulations of the coherent
evolution of a 3-qubit system show that the control sequences faithfully
implement the unitary operations, typically yielding gate fidelities on the
order of 0.999 and, for some sequences, up to 0.9997. The experimentally
determined density matrices resulting from the application of different control
sequences on a 3-spin system have overlaps of up to 0.99 with the expected
states, confirming the quality of the experimental implementation.Comment: RevTeX3, 11 pages including 2 tables and 5 figures; Journal of
Chemical Physics, in pres
Dynamic Phase Transition, Universality, and Finite-size Scaling in the Two-dimensional Kinetic Ising Model in an Oscillating Field
We study the two-dimensional kinetic Ising model below its equilibrium
critical temperature, subject to a square-wave oscillating external field. We
focus on the multi-droplet regime where the metastable phase decays through
nucleation and growth of many droplets of the stable phase. At a critical
frequency, the system undergoes a genuine non-equilibrium phase transition, in
which the symmetry-broken phase corresponds to an asymmetric stationary limit
cycle for the time-dependent magnetization. We investigate the universal
aspects of this dynamic phase transition at various temperatures and field
amplitudes via large-scale Monte Carlo simulations, employing finite-size
scaling techniques adopted from equilibrium critical phenomena. The critical
exponents, the fixed-point value of the fourth-order cumulant, and the critical
order-parameter distribution all are consistent with the universality class of
the two-dimensional equilibrium Ising model. We also study the cross-over from
the multi-droplet to the strong-field regime, where the transition disappears
Heavy-light Mesons and Baryons with b quarks
We present lattice results for the spectrum of mesons containing one heavy
quark and of baryons containing one or two heavy quarks. The calculation is
done in the quenched approximation using the NRQCD formalism for the heavy
quark. We analyze the dependence of the mass splittings on both the heavy and
the light quark masses. Meson P-state fine structure and baryon hyperfine
splittings are resolved for the first time. We fix the b quark mass using both
M_B and M_{\Lambda_b}, and our best estimate is m_b^\MSbar(m_b^\MSbar) =
4.35(10)({}^{-3}_{+2})(10) GeV. The spectrum, obtained by interpolation to m_b,
is compared with the experimental data.Comment: 34 pages, LaTeX, 13 postscript figures, version as publish in Phys.
Rev.
Explicit asymptotic modelling of transient Love waves propagated along a thin coating
The official published version can be obtained from the link below.An explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples.This work is sponsored by the grant from Higher Education of Pakistan and by the Brunel University’s “BRIEF” research award
Mutations of the BRAF gene in human cancer
Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma
An analog of glibenclamide selectively enhances autophagic degradation of misfolded α1-antitrypsin Z
The classical form of α1-antitrypsin deficiency (ATD) is characterized by intracellular accumulation of the misfolded variant α1-antitrypsin Z (ATZ) and severe liver disease in some of the affected individuals. In this study, we investigated the possibility of discovering novel therapeutic agents that would reduce ATZ accumulation by interrogating a C. elegans model of ATD with high-content genome-wide RNAi screening and computational systems pharmacology strategies. The RNAi screening was utilized to identify genes that modify the intracellular accumulation of ATZ and a novel computational pipeline was developed to make high confidence predictions on repurposable drugs. This approach identified glibenclamide (GLB), a sulfonylurea drug that has been used broadly in clinical medicine as an oral hypoglycemic agent. Here we show that GLB promotes autophagic degradation of misfolded ATZ in mammalian cell line models of ATD. Furthermore, an analog of GLB reduces hepatic ATZ accumulation and hepatic fibrosis in a mouse model in vivo without affecting blood glucose or insulin levels. These results provide support for a drug discovery strategy using simple organisms as human disease models combined with genetic and computational screening methods. They also show that GLB and/or at least one of its analogs can be immediately tested to arrest the progression of human ATD liver disease.</div
- …
