21,105 research outputs found
On the stability constraints and oscillatory behavior of coupled systems
Stability constraints for two general forms of coupled systems of second order nonlinear differential equation
Flow with PMD: Past and Future
Measurements of azimuthal distribution of inclusive photons using the fine
granularity preshower photon multiplicity detector (PMD) at CERN SPS are used
to obtain anisotropy in the azimuthal distributions. These results are used to
estimate the anisotropy in the neutral pion distributions. The results are
compared with results of charged particle data, both for first order and second
order anisotropy. Assuming the same anisotropy for charged and neutral pions,
the anisotropy in photons is estimated and compared with the measured
anisotropy. The effect of neutral pion decay on the correlation between the
first order and the second order event plane is also discussed. Data from PMD
can also be used to estimate the reaction plane for studying any anisotropy in
particle emission characteristics in the ALICE experiment at the Large Hadron
Collider. In particular, we show that using the event plane from the PMD, it
will be possible to measure the anisotropy in Jpsi absorption (if any) in the
ALICE experiment.Comment: Invited talk in the Fourth International Conference on the Physics
and Astrophysics of Quark Gluon Plasma, 26-30 Nov.2001, Jaipur, Indi
Photon Multiplicity Measurements : From SPS to RHIC and LHC
Results from the photon multiplicity measurements using a fine granularity
preshower photon multiplicity detector (PMD) at CERN SPS are discussed. These
include study of pseudo-rapidity distributions of photons, scaling of photon
multiplicity with number of participating nucleons, centrality dependence of
mean transverse momentum of photons, event-by-event fluctuations in photon
multiplicity and localised charged-neutral fluctuations. Basic features of the
PMD to be used in STAR experiment at RHIC and in ALICE experiment at LHC are
also discussed.Comment: 12 pages, Invited talk at the 4th International Conference on the
Physcis and Astrophysics of the Quark-Gluon-Plasma, November 2001, Jaipur,
India, to appear in Praman
Studies in matter antimatter separation and in the origin of lunar magnetism
Antimatter experiments of the University of Santa Clara are investigated. Topics reported include: (1) planetary geology, (2) lunar Apollo magnetometer experiments, and (3) Roche limit of a solid body
Comparative studies of lunar, Martian, and Mercurian craters and plains
The spatial distribution of lunar smooth plains is not consistent with experimental simulations of melt rock emplacement during cratering in layered materials. Nor is it consistent with the location of melt rocks (suevite) near the Ries basin. Lunar smooth plains surrounding Imbrium are most extensive in areas where pre-existing craters are most degraded. This observation suggests that plains form by impact of basin and local primary crater ejecta, together with deposition of debris excavated by the resultant secondary cratering events. Craters within the belt of smooth plains surrounding the Caloris basin on Mercury are most degraded nearest the basin; this suggests that Mercurian smooth plains must, at least in part, be emplaced in a manner similar to plains surrounding the Imbrium basin. Mercurian uplands have a primary crater population deficient in small crater diameters (less than approximately 30 km). Lunar uplands far from major basins also have a crater population deficient in small crater sizes. Martian cratered terrain exhibits a similar crater deficiency, which was previously interpreted as due to obliteration of small craters (less than approximately 30 km) by some surface process. A crater size distribution deficient in small sizes (less than approximately 30 km) on the Mercurian, lunar, and Martian uplands has implications for the origin of debris bombarding the inner solar system during the period recorded by these surfaces. It is proposed that during late heavy bombardment, the inner solar system was inundated with bodies that broke up under tidal fission as they approached the planets. Such a mechanism would lend to production of a crater population deficient in small crater sizes, and it would also explain the large degree of spatial clustering of primary craters on Mercury, the moon, and Mars
Negative Interactions in Irreversible Self-Assembly
This paper explores the use of negative (i.e., repulsive) interaction the
abstract Tile Assembly Model defined by Winfree. Winfree postulated negative
interactions to be physically plausible in his Ph.D. thesis, and Reif, Sahu,
and Yin explored their power in the context of reversible attachment
operations. We explore the power of negative interactions with irreversible
attachments, and we achieve two main results. Our first result is an
impossibility theorem: after t steps of assembly, Omega(t) tiles will be
forever bound to an assembly, unable to detach. Thus negative glue strengths do
not afford unlimited power to reuse tiles. Our second result is a positive one:
we construct a set of tiles that can simulate a Turing machine with space bound
s and time bound t, while ensuring that no intermediate assembly grows larger
than O(s), rather than O(s * t) as required by the standard Turing machine
simulation with tiles
Optimal control of linear time delay systems
Obtaining optimal control for linear time varying system with time dela
The effect of ionization on the populations of excited levels of C IV and C V in tokamak edge plasmas
The main populating and depopulating mechanisms of the excited energy levels
of ions in plasmas with densities <1023-1024 m-3 are electron collisional
excitation from the ion's ground state and radiative decay, respectively, with
the majority of the electron population being in the ground state of the
ionization stage. Electron collisional ionization is predominately expected to
take place from one ground state to that of the next higher ionization stage.
However, the question arises as to whether, in some cases, ionization can also
affect the excited level populations. This would apply particularly to those
cases involving transient events such as impurity influxes in a laboratory
plasma. An analysis of the importance of ionization in populating the excited
levels of ions in plasmas typical of those found in the edge of tokamaks is
undertaken for the C IV and C V ionization stages. The emphasis is on those
energy levels giving rise to transitions of most use for diagnostic purposes.
Carbon is chosen since it is an important contaminant of JET plasmas; it was
the dominant low Z impurity before the installation of the ITER-like wall and
is still present in the plasma after its installation. Direct electron
collisional ionization both from and to excited levels is considered.
Distorted-wave Flexible Atomic Code calculations are performed to generate the
required ionization cross sections, due to a lack of atomic data in the
literature.Comment: 29 pages, 5 figures. This is an author-created, un-copyedited version
of an article accepted for publication in Journal of Physics B. IOP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from i
On fixed linear systems with a generalized performance criteria
Fixed linear systems with generalized performance criteri
- …
