565 research outputs found
Recommended from our members
Fabrication of inhaled hybrid silver/ciprofloxacin nanoparticles with synergetic effect against Pseudomonas aeruginosa
Ciprofloxacin (CFX) is a fluroquinolone antibiotic used as a first line treatment against infections caused by Pseudomonas aeruginosa and Streptococcus pneumonia that are commonly acquired by cystic fibrosis (CF) patients. However, no inhalation formulation is currently available for ciprofloxacin. Hybrid silica coated silver nanoparticles were prepared using Stöber reaction and the optimum ratio of chitosan and sodium tripolyphosphate was used to encapsulate CFX. Particle deposition was assessed in vitro using twin stage impinger while antimicrobial activity was evaluated based on the planktonic growth of P. aeruginosa as well as against P. aeruginosa sp biofilm formation. In vitro deposition results showed significant deposition in stage 2 using twin stage impinger (TSI) (∼70%). Compared to CFX, the formed hybrid nanoparticles were 3-4 folds more effective against inhibiting growth and biofilm formation by P. aeruginosa PAO1 and P. aeruginosa NCTC 10662
An improved wrapper-based feature selection method for machinery fault diagnosis
A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most representative feature subset for the machine learning algorithm. In contrast, the trade-off relationship between capability when selecting the best feature subset and computational effort is inevitable in the wrapper-based feature selection (WFS) method. This paper proposes an improved WFS technique before integration with a support vector machine (SVM) model classifier as a complete fault diagnosis system for a rolling element bearing case study. The bearing vibration dataset made available by the Case Western Reserve University Bearing Data Centre was executed using the proposed WFS and its performance has been analysed and discussed. The results reveal that the proposed WFS secures the best feature subset with a lower computational effort by eliminating the redundancy of re-evaluation. The proposed WFS has therefore been found to be capable and efficient to carry out feature selection tasks
An improved wrapper-based feature selection method for machinery fault diagnosis
A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most representative feature subset for the machine learning algorithm. In contrast, the trade-off relationship between capability when selecting the best feature subset and computational effort is inevitable in the wrapper-based feature selection (WFS) method. This paper proposes an improved WFS technique before integration with a support vector machine (SVM) model classifier as a complete fault diagnosis system for a rolling element bearing case study. The bearing vibration dataset made available by the Case Western Reserve University Bearing Data Centre was executed using the proposed WFS and its performance has been analysed and discussed. The results reveal that the proposed WFS secures the best feature subset with a lower computational effort by eliminating the redundancy of re-evaluation. The proposed WFS has therefore been found to be capable and efficient to carry out feature selection tasks
Fabrication of biopolymer based nanoparticles for the entrapment of chromium and iron supplements
The objective of this study was to encapsulate iron and chromium into novel nanoparticles
formulated using chitosan (CS), dextran sulfate (DS) and whey protein isolate (WPI) for oral drug delivery. Empty and loaded CS-DS nanoparticles were prepared via complex coacervation whilst whey protein nanocarriers were produced by a modified thermal processing method using chitosan. The physiochemical properties of the particles were characterized to determine the effects of formulation variables, including biopolymer ratio on particle size and zeta potential. Permeability studies were also undertaken on the most stable whey protein–iron nanoparticles by measuring Caco-2 ferritin formation. A particle size analysis revealed that the majority of samples were sub-micron sized, ranging from 420–2400 nm for CS-DS particles and 220–1000 nm for WPI-CS samples. As expected, a higher chitosan concentration conferred a 17% more positive zeta potential on chromium-entrapped WPI nanoparticles, whilst a higher dextran volume decreased the size of CS-DS nanoparticles by 32%. The addition of iron also caused a significant increase in size for all samples, as seen where the loaded WPI samples were 296 nm larger than the empty particles. Caco-2 iron absorption revealed that one formulation, which had the lowest particle size (226 ± 10 nm), caused a 64% greater iron absorption compared to the ferrous sulfate standard. This study describes, for the first time, the novel design of chromium- and iron-entrapped nanoparticles, which could act as novel systems for oral drug delivery
DFT Calculations as a Tool to Analyse Quadrupole Splittings of Spin Crossover Fe(II) complexes
Density functional methods have been applied to calculate the quadrupole
splitting of a series of iron(II) spin crossover complexes. Experimental and
calculated values are in reasonable agreement. In one case spin-orbit coupling
is necessary to explain the very small quadrupole splitting value of 0.77 mm/s
at 293 K for a high-spin isomer
Place Energy in Urban Drama Scene (River Transport in Shatt al-Arab)
The city of Basra is one of the most important cities in Iraq and most of the possessions of the potential, making it the most appropriate option for the subject of research, which depends on the energy of the place as a basis for him. The Shatt Al Arab was chosen for the river represents the spiritual and material value of the population of the city but for Iraq as a whole in terms of social, This river consists of the confluence of the Tigris and the Euphrates and is an important and vital gateway to the Arabian Gulf, so the discussion deal with the relationship between place energy and dramatic situation through the presentation of the research problem, namely: (There is no clear perception of the dramatic situation of the urban scene of Shatt al-Arab and resolve the research problem has been selected research hypothesis, which states: (The construction of the dramatic situation of the urban scene of Shatt al-Arab is based on activating the concept of place energy, the Research objective (constructing the dramatic situation of the urban scene of Shatt al-Arab by activating the concept of place energy using the possibility of river transport). As determined pursuant to the theoretical framework of the research problem and hypothesis, as theoretical part discusses the definition of place (place theory and place energy), river and river transport, urban scene drama(dramatic situation and perception). The research gives number of conclusions and final recommendations the most important conclusions(There is awareness of the energies of place and material potential, but there is a neglect of the spiritual side, which is an important andvital aspect in the process of building the dramatic situation), one of the main recommendations of the research(Adopting a mechanism to study and activate river transport in the Shatt al-Arab so that people can understand the urban scene of the Shatt al-Arab and thus create memories associated with the place for the purpose of building its own dramatic situation)
Emulsion Liquid Membrane (ELM) Enhanced by Nanoparticles and Ionic Liquid for Extracting Vanadium Ions from Wastewater
Emulsion liquid membrane (ELM) stands out as an extraction process that has drawn much attention due to its promising prospects in industrial wastewater treatment technology. Nevertheless, the pivotal challenge is to reach high membrane stability to overcome the obstacle of applying ELM at the industrial scale. In this study, ELM was boosted by using nanoparticles (superparamagnetic iron oxide (Fe2O3)) in the stripping phase (W1) and ionic liquid (1-methyl-3-octyl-imidazolium-hexafluorophosphate [OMIM][PF6) in the oil phase (O) for recovering/extracting vanadium from synthetic wastewater to near completion and at the same time enhancing emulsion stability to be appropriate for industrial application. The vanadium recovery/extraction percentage has been raised significantly in 3 min to 99.6% when adding 0.01% (w/w) Fe2O3 NPs (20 to 50 nm in size) in the internal phase (W1) and 5% (v/v) [OMIM]PF6 ionic liquid in the oil phase (O). Also, the emulsion stability was considerably improved, and the leakage percentage was reduced to 16% after 3 days. The results of this study could be used in the future to remove additional heavy metal ions from industrial effluents
Effect of Aqueous Extract of Fig (Ficus carica) Fruit on Some Hematological Parameters in Female Rabbits
The effect of the aqueous extract of fig (Ficus carica) fruit was studied by using different concentrations of this fruit (15, 20 and 25 mg/kg of body weight) on some hematological parameters (hemoglobin concentration, packed cell volume, white blood cell count and platelets count) in female rabbits.
Twenty female rabbits were randomly divided into four groups (five animals in each group). Three groups were dosed with the concentrations mentioned above, while the last was administered with distilled water and considered as control group. These animals were orally dosed by aqueous extract using a micropipette.
The results showed that there was a significant (
- …
