3,608 research outputs found

    Maternal Geohelminth Infections Are Associated with an Increased Susceptibility to Geohelminth Infection in Children: A Case-Control Study

    Get PDF
    Background: Children of mothers infected with soil-transmitted helminths (STH) may have an increased susceptibility to STH infection. Methods and Findings: We did a case-control study nested in a birth cohort in Ecuador. Data from 1,004 children aged 7 months to 3 years were analyzed. Cases were defined as children with Ascaris lumbricoides and/or Trichuris trichiura, controls without. Exposure was defined as maternal infection with A. lumbricoides and/or T. trichiura, detected during the third trimester of pregnancy. The analysis was restricted to households with a documented infection to control for infection risk. Children of mothers with STH infections had a greater risk of infection compared to children of uninfected mothers (adjusted OR 2.61, 95% CI: 1.88–3.63, p,0.001). This effect was particularly strong in children of mothers with both STH infections (adjusted OR: 5.91, 95% CI: 3.55–9.81, p,0.001). Newborns of infected mothers had greater levels of plasma IL-10 than those of uninfected mothers (p = 0.033), and there was evidence that cord blood IL-10 was increased among newborns who became infected later in childhood (p = 0.060). Conclusion: Our data suggest that maternal STH infections increase susceptibility to infection during early childhood, an effect that was associated with elevated IL-10 in cord plasma

    Stable suspension and dispersion-induced transitions from repulsive Casimir forces between fluid-separated eccentric cylinders

    Full text link
    Using an exact numerical method for finite nonplanar objects, we demonstrate a stable mechanical suspension of a silica cylinder within a metallic cylinder separated by ethanol, via a repulsive Casimir force between the silica and the metal. We investigate cylinders with both circular and square cross sections, and show that the latter exhibit a stable orientation as well as a stable position, via a method to compute Casimir torques for finite objects. Furthermore, the stable orientation of the square cylinder is shown to undergo an unusual 45 degrees transition as a function of the separation lengthscale, which is explained as a consequence of material dispersion.Comment: Published in Physical Review Letters. Vol. 101, page, 190404 (2008

    Tailoring optical nonlinearities via the Purcell effect

    Full text link
    We predict that the effective nonlinear optical susceptibility can be tailored using the Purcell effect. While this is a general physical principle that applies to a wide variety of nonlinearities, we specifically investigate the Kerr nonlinearity. We show theoretically that using the Purcell effect for frequencies close to an atomic resonance can substantially influence the resultant Kerr nonlinearity for light of all (even highly detuned) frequencies. For example, in realistic physical systems, enhancement of the Kerr coefficient by one to two orders of magnitude could be achieved

    Computation and visualization of photonic quasicrystal spectra via Blochs theorem

    Full text link
    Previous methods for determining photonic quasicrystal (PQC) spectra have relied on the use of large supercells to compute the eigenfrequencies and/or local density of states (LDOS). In this manuscript, we present a method by which the energy spectrum and the eigenstates of a PQC can be obtained by solving Maxwells equations in higher dimensions for any PQC defined by the standard cut-and-project construction, to which a generalization of Blochs theorem applies. In addition, we demonstrate how one can compute band structures with defect states in the higher-dimensional superspace with no additional computational cost. As a proof of concept, these general ideas are demonstrated for the simple case of one-dimensional quasicrystals, which can also be solved by simple transfer-matrix techniques.Comment: Published in Physical Review B, 77 104201, 200

    Casimir micro-sphere diclusters and three-body effects in fluids

    Full text link
    Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of non-touching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of non-additive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon/teflon spherical diclusters to those consisting of layered micro-spheres, such as the hollow- core (spherical shells) considered here.Comment: 11 pages, 9 figure

    Severe Pneumococcal Pneumonia Causes Acute Cardiac Toxicity and Subsequent Cardiac Remodeling

    Get PDF
    Rationale: Up to one-third of patients hospitalized with pneumococcal pneumonia experience major adverse cardiac events (MACE) during or after pneumonia. In mice, Streptococcus pneumoniae caninvade themyocardium, induce cardiomyocyte death, and disrupt cardiac function following bacteremia, but it is unknown whether the same occurs in humans with severe pneumonia. Objectives: We sought to determine whether S. pneumoniae can (1) translocate the heart, (2) induce cardiomyocyte death, (3) causeMACE, and (4) induce cardiac scar formation after antibiotic treatment during severe pneumonia using a nonhuman primate (NHP) model. Methods: We examined cardiac tissue from six adult NHPs with severe pneumococcal pneumonia and three uninfected control animals. Three animals were rescued with antibiotics (convalescent animals). Electrocardiographic, echocardiographic, and serum biomarkers of cardiac damage were measured (troponin T, N-terminal pro-brain natriuretic peptide, and heart-type fatty acid binding protein). Histological examination included hematoxylin and eosin staining, immunofluorescence, immunohistochemistry, picrosirius red staining, and transmission electron microscopy. Immunoblots were used to assess the underlying mechanisms. Measurements and Main Results: Nonspecific ischemic alterations were detected by electrocardiography and echocardiography. Serum levels of troponin T and heart-type fatty acid binding protein were increased (P,0.05) after pneumococcal infection in both acutely ill and convalescent NHPs. S. pneumoniae was detected in the myocardium of all NHPs with acute severe pneumonia. Necroptosis and apoptosis were detected in the myocardium of both acutely ill and convalescent NHPs. Evidence of cardiac scar formation was observed only in convalescent animals by transmission electron microscopy and picrosirius red staining. Conclusions: S. pneumoniae invades the myocardium and induces cardiac injury with necroptosis and apoptosis, followed by cardiac scarring after antibiotic therapy, in anNHP model of severe pneumonia

    The Orbital Order Parameter in La0.95Sr0.05MnO3 probed by Electron Spin Resonance

    Full text link
    The temperature dependence of the electron-spin resonance linewidth in La0.95Sr0.05MnO3 has been determined and analyzed in the paramagnetic regime across the orbital ordering transition. From the temperature dependence and the anisotropy of linewidth and gg-value the orbital order can be unambiguously determined via the mixing angle of the wave functions of the ege_{\rm g}-doublet. The linewidth shows a similar evolution with temperature as resonant x-ray scattering results

    Virtual photons in imaginary time: Computing exact Casimir forces via standard numerical-electromagnetism techniques

    Full text link
    We describe a numerical method to compute Casimir forces in arbitrary geometries, for arbitrary dielectric and metallic materials, with arbitrary accuracy (given sufficient computational resources). Our approach, based on well-established integration of the mean stress tensor evaluated via the fluctuation-dissipation theorem, is designed to directly exploit fast methods developed for classical computational electromagnetism, since it only involves repeated evaluation of the Green's function for imaginary frequencies (equivalently, real frequencies in imaginary time). We develop the approach by systematically examining various formulations of Casimir forces from the previous decades and evaluating them according to their suitability for numerical computation. We illustrate our approach with a simple finite-difference frequency-domain implementation, test it for known geometries such as a cylinder and a plate, and apply it to new geometries. In particular, we show that a piston-like geometry of two squares sliding between metal walls, in both two and three dimensions with both perfect and realistic metallic materials, exhibits a surprising non-monotonic ``lateral'' force from the walls.Comment: Published in Physical Review A, vol. 76, page 032106 (2007

    SUMO chain-induced dimerization activates RNF4

    Get PDF
    Dimeric RING E3 ligases interact with protein substrates and conformationally restrain the ubiquitin-E2-conjugating enzyme thioester complex such that it is primed for catalysis. RNF4 is an E3 ligase containing an N-terminal domain that binds its polySUMO substrates and a C-terminal RING domain responsible for dimerization. To investigate how RNF4 activity is controlled, we increased polySUMO substrate concentration by ablating expression of SUMO protease SENP6. Accumulation of SUMO chains in vivo leads to ubiquitin-mediated proteolysis of RNF4. In vitro we demonstrate that at concentrations equivalent to those found in vivo RNF4 is predominantly monomeric and inactive as an ubiquitin E3 ligase. However, in the presence of SUMO chains, RNF4 is activated by dimerization, leading to both substrate ubiquitylation and autoubiquitylation, responsible for degradation of RNF4. Thus the ubiquitin E3 ligase activity of RNF4 is directly linked to the availability of its polySUMO substrates

    Wegener’s Disease Presenting with Occipital Condyle Syndrome

    Get PDF
    Tumors or chronic inflammatory lesions of the occipital condyle may cause occipital pain associated with an ipsilateral hypoglossal nerve injury (occipital condyle syndrome). We describe a young woman with recurrent otitis media and occipital condyle syndrome associated with a limited form of Wegener’s disease
    corecore