2,127 research outputs found
Herschel Planetary Nebula Survey (HerPlaNS) - First Detection of OH+ in Planetary Nebulae
We report the first detections of OH emission in planetary nebulae (PNe).
As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the
PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed
a line survey in these PNe over the entire spectral range between 51 and
672m to look for new detections. OH rotational emission lines at
152.99, 290.20, 308.48, and 329.77m were detected in the spectra of three
planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures
and column densities derived from these lines are in the range of 27 to 47 K
and 210 to 4 10 cm, respectively. In PNe,
the OH+ rotational line emission appears to be produced in the
photodissociation region (PDR) in these objects. The emission of OH+ is
observed only in PNe with hot central stars (T > 100000 K), suggesting
that high-energy photons may play a role in the OH+ formation and its line
excitation in these objects, as it seems to be the case for ultraluminous
galaxies.Comment: 9 pages, 7 figures; accepted for publication in A&
Grammar-Based Geodesics in Semantic Networks
A geodesic is the shortest path between two vertices in a connected network.
The geodesic is the kernel of various network metrics including radius,
diameter, eccentricity, closeness, and betweenness. These metrics are the
foundation of much network research and thus, have been studied extensively in
the domain of single-relational networks (both in their directed and undirected
forms). However, geodesics for single-relational networks do not translate
directly to multi-relational, or semantic networks, where vertices are
connected to one another by any number of edge labels. Here, a more
sophisticated method for calculating a geodesic is necessary. This article
presents a technique for calculating geodesics in semantic networks with a
focus on semantic networks represented according to the Resource Description
Framework (RDF). In this framework, a discrete "walker" utilizes an abstract
path description called a grammar to determine which paths to include in its
geodesic calculation. The grammar-based model forms a general framework for
studying geodesic metrics in semantic networks.Comment: First draft written in 200
Novel Schizophrenia Risk Gene TCF4 Influences Verbal Learning and Memory Functioning in Schizophrenia Patients
Background: Recently, a role of the transcription factor 4 (TCF4) gene in schizophrenia has been reported in a large genome-wide association study. It has been hypothesized that TCF4 affects normal brain development and TCF4 has been related to different forms of neurodevelopmental disorders. Schizophrenia patients exhibit strong impairments of verbal declarative memory (VDM) functions. Thus, we hypothesized that the disease-associated C allele of the rs9960767 polymorphism of the TCF4 gene led to impaired VDM functioning in schizophrenia patients. Method: The TCF4 variant was genotyped in 401 schizophrenia patients. VDM functioning was measured using the Rey Auditory Verbal Learning Test (RAVLT). Results: Carriers of the C allele were less impaired in recognition compared to those carrying the AA genotype (13.76 vs. 13.06; p = 0.049). Moreover, a trend toward higher scores in patients with the risk allele was found for delayed recall (10.24 vs. 9.41; p = 0.088). The TCF4 genotype did not influence intelligence or RAVLT immediate recall or total verbal learning. Conclusion: VDM function is influenced by the TCF4 gene in schizophrenia patients. However, the elevated risk for schizophrenia is not conferred by TCF4-mediated VDM impairment. Copyright (C) 2011 S. Karger AG, Base
IMRT beam angle optimization using electromagnetism-like algorithm
The selection of appropriate beam irradiation directions in radiotherapy – beam angle optimization (BAO) problem – is very impor- tant for the quality of the treatment, both for improving tumor irradia- tion and for better organs sparing. However, the BAO problem is still not solved satisfactorily and, most of the time, beam directions continue to be manually selected in clinical practice which requires many trial and error iterations between selecting beam angles and computing fluence patterns until a suitable treatment is achieved. The objective of this pa- per is to introduce a new approach for the resolution of the BAO problem, using an hybrid electromagnetism-like algorithm with descent search to tackle this highly non-convex optimization problem. Electromagnetism- like algorithms are derivative-free optimization methods with the ability to avoid local entrapment. Moreover, the hybrid electromagnetism-like algorithm with descent search has a high ability of producing descent directions. A set of retrospective treated cases of head-and-neck tumors at the Portuguese Institute of Oncology of Coimbra is used to discuss the benefits of the proposed algorithm for the optimization of the BAO problem.Fundação para a Ciência e a Tecnologia (FCT
Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes
Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans
Black Hole Spectroscopy: Testing General Relativity through Gravitational Wave Observations
Assuming that general relativity is the correct theory of gravity in the
strong field limit, can gravitational wave observations distinguish between
black hole and other compact object sources? Alternatively, can gravitational
wave observations provide a test of one of the fundamental predictions of
general relativity? Here we describe a definitive test of the hypothesis that
observations of damped, sinusoidal gravitational waves originated from a black
hole or, alternatively, that nature respects the general relativistic no-hair
theorem. For astrophysical black holes, which have a negligible charge-to-mass
ratio, the black hole quasi-normal mode spectrum is characterized entirely by
the black hole mass and angular momentum and is unique to black holes. In a
different theory of gravity, or if the observed radiation arises from a
different source (e.g., a neutron star, strange matter or boson star), the
spectrum will be inconsistent with that predicted for general relativistic
black holes. We give a statistical characterization of the consistency between
the noisy observation and the theoretical predictions of general relativity,
together with a numerical example.Comment: 19 pages, 7 figure
What Drives False Memories in Psychopathology? A Case for Associative Activation
In clinical and court settings, it is imperative to know whether posttraumatic stress disorder (PTSD) and depression may make people susceptible to false memories. We conducted a review of the literature on false memory effects in participants with PTSD, a history of trauma, or depression. When emotional associative material was presented to these groups, their levels of false memory were raised relative to those in relevant comparison groups. This difference did not consistently emerge when neutral or nonassociative material was presented. Our conclusion is supported by a quantitative comparison of effect sizes between studies using emotional associative or neutral, nonassociative material. Our review suggests that individuals with PTSD, a history of trauma, or depression are at risk for producing false memories when they are exposed to information that is related to their knowledge base
Extreme Mass Ratio Inspirals: LISA's unique probe of black hole gravity
In this review article I attempt to summarise past and present-ongoing-work
on the problem of the inspiral of a small body in the gravitational field of a
much more massive Kerr black hole. Such extreme mass ratio systems, expected to
occur in galactic nuclei, will constitute prime sources of gravitational
radiation for the future LISA gravitational radiation detector. The article's
main goal is to provide a survey of basic celestial mechanics in Kerr spacetime
and calculations of gravitational waveforms and backreaction on the small
body's orbital motion, based on the traditional `flux-balance' method and the
Teukolsky black hole perturbation formalism.Comment: Invited review article, 45 pages, 23 figure
A Statistical Inference Method for Interpreting the CLASP Observations
On 3rd September 2015, the Chromospheric Lyman-Alpha SpectroPolarimeter
(CLASP) successfully measured the linear polarization produced by scattering
processes in the hydrogen Lyman- line of the solar disk radiation,
revealing conspicuous spatial variations in the and signals. Via
the Hanle effect the line-center and amplitudes encode information
on the magnetic field of the chromosphere-corona transition region (TR), but
they are also sensitive to the three-dimensional structure of this corrugated
interface region. With the help of a simple line formation model, here we
propose a statistical inference method for interpreting the Lyman-
line-center polarization observed by CLASP.Comment: Accepted for publication in The Astrophysical Journa
- …
