1,280 research outputs found
A New Low Cost Biosorbent for a Cationic Dye Treatment
The aim of our study consists to investigate the adsorption of Methylene Blue from aqueous solution by a new biosorbent prepared from Papaya seed. Adsorption behavior of the cationic dye was analyzed by variation of solution pH, contact time, adsorbent dose, and temperature. Adsorption isotherms were studied according to the Langmuir and Freundlich Model, and adsorption kinetics according to pseudo first and second order. Results show that the maximum adsorption is obtained at ambient temperature with the yield of 98.82% and was reached in first 20min (pH = 10, adsorbent dose of 100 mg in 50 mL). The Langmuir isotherm shows a correlation coefficient of 99.4% higher than 95.4%obtained for Freundlich model and the adsorption kinetic model follow a pseudo-second order with a maximum adsorption capacity of 52.28 mg/g
Fusion of Synchronous Fluorescence Spectra with Application to Argan Oil for Adulteration Analysis
When synchronous fluorescence (SyF) spectroscopy is used for quantitative and qualitative analysis, selection of a useful wavelength interval between the excitation and emission wavelengths (Δλ) is needed. Presented is a fusion approach to combine Δλ intervals thereby negating the selection process. This study uses the fusion of SyF spectra to detect adulteration of argan oil by corn oil and quantitative analysis of the corn oil content. The SyF spectra were acquired by varying the excitation wavelength in the region 300-800 nm using Δλ wavelength intervals from 10 to 100 nm in steps of 10 nm producing 10 sets of SyF spectra. For quantitative analysis, two calibration approaches are evaluated with these 10 SyF spectral datasets. Multivariate calibration by partial least squares (PLS) and a univariate calibration process where the SyF spectra are summed over respective SyF spectral ranges, the area under the curve (AUC) method. For adulteration detection and quantitation of the corn oil, prediction errors decrease with fusion compared to individually using the 10 Δλ interval SyF spectral data sets. For this data set, the AUC method generally provides smaller prediction errors than PLS at individual Δλ intervals as well as with fusion of all 10 Δλ intervals
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
Using a novel electrochemical phase-field model, we question the common
belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases
during battery discharge. For small currents, spinodal decomposition or
nucleation leads to moving phase boundaries. Above a critical current density
(in the Tafel regime), the spinodal disappears, and particles fill
homogeneously, which may explain the superior rate capability and long cycle
life of nano-LiFePO4 cathodes.Comment: 27 pages, 8 figure
Different Roles of BDNF in Nucleus Accumbens Core versus Shell during the Incubation of Cue-Induced Cocaine Craving and Its Long-Term Maintenance
Brain-derived neurotrophic factor (BDNF) contributes to diverse types of plasticity, including cocaine addiction. We investigated the role of BDNF in the rat nucleus accumbens (NAc) in the incubation of cocaine craving over 3 months of withdrawal from extended access cocaine self-administration. First, we confirmed by immunoblotting that BDNF levels are elevated after this cocaine regimen on withdrawal day 45 (WD45) and showed that BDNF mRNA levels are not altered. Next, we explored the time course of elevated BDNF expression using immunohistochemistry. Elevation of BDNF in the NAc core was detected on WD45 and further increased on WD90, whereas elevation in shell was not detected until WD90. Surface expression of activated tropomyosin receptor kinase B (TrkB) was also enhanced on WD90. Next, we used viral vectors to attenuate BDNF-TrkB signaling. Virus injection into the NAc core enhanced cue-induced cocaine seeking on WD1 compared with controls, whereas no effect was observed on WD30 or WD90. Attenuating BDNF-TrkB signaling in shell did not affect cocaine seeking on WD1 or WD45 but significantly decreased cocaine seeking on WD90. These results suggest that basal levels of BDNF transmission in the NAc core exert a suppressive effect on cocaine seeking in early withdrawal (WD1), whereas the late elevation of BDNF protein in NAc shell contributes to incubation in late withdrawal (WD90). Finally, BDNF protein levels in the NAc were significantly increased after ampakine treatment, supporting the novel hypothesis that the gradual increase of BDNF levels in NAc accompanying incubation could be caused by increased AMPAR transmission during withdrawal
Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries
Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a ,25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.open1
Sphalerons and the Electroweak Phase Transition in Models with Higher Scalar Representations
In this work we investigate the sphaleron solution in a
gauge theory, which also encompasses the Standard Model, with higher scalar
representation(s) (). We show that the field profiles
describing the sphaleron in higher scalar multiplet, have similar trends like
the doublet case with respect to the radial distance. We compute the sphaleron
energy and find that it scales linearly with the vacuum expectation value of
the scalar field and its slope depends on the representation. We also
investigate the effect of gauge field and find that it is small for the
physical value of the mixing angle, and resembles the case for the
doublet. For higher representations, we show that the criterion for strong
first order phase transition, , is relaxed with respect to
the doublet case, i.e. .Comment: 20 pages, 5 figures & 1 table, published versio
Development of a biosensor for urea assay based on amidase inhibition, using an ion-selective electrode
A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition
an individual participant data meta-analysis
Background The impact of neuraminidase inhibitors (NAIs) on influenza-related
pneumonia (IRP) is not established. Our objective was to investigate the
association between NAI treatment and IRP incidence and outcomes in patients
hospitalised with A(H1N1)pdm09 virus infection. Methods A worldwide meta-
analysis of individual participant data from 20 634 hospitalised patients with
laboratory-confirmed A(H1N1)pdm09 (n = 20 021) or clinically diagnosed (n =
613) ‘pandemic influenza’. The primary outcome was radiologically confirmed
IRP. Odds ratios (OR) were estimated using generalised linear mixed modelling,
adjusting for NAI treatment propensity, antibiotics and corticosteroids.
Results Of 20 634 included participants, 5978 (29·0%) had IRP; conversely,
3349 (16·2%) had confirmed the absence of radiographic pneumonia (the
comparator). Early NAI treatment (within 2 days of symptom onset) versus no
NAI was not significantly associated with IRP [adj. OR 0·83 (95% CI 0·64–1·06;
P = 0·136)]. Among the 5978 patients with IRP, early NAI treatment versus none
did not impact on mortality [adj. OR = 0·72 (0·44–1·17; P = 0·180)] or
likelihood of requiring ventilatory support [adj. OR = 1·17 (0·71–1·92; P =
0·537)], but early treatment versus later significantly reduced mortality
[adj. OR = 0·70 (0·55–0·88; P = 0·003)] and likelihood of requiring
ventilatory support [adj. OR = 0·68 (0·54–0·85; P = 0·001)]. Conclusions Early
NAI treatment of patients hospitalised with A(H1N1)pdm09 virus infection
versus no treatment did not reduce the likelihood of IRP. However, in patients
who developed IRP, early NAI treatment versus later reduced the likelihood of
mortality and needing ventilatory support
Recommended from our members
Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for Lithium-Ion Batteries
Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage,Li-ion batteries and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type architecture as anode for lithium-ion batteries for the first time. The graphene based hierarchical architecture plays vital roles in achieving fast electron/ion transfer, thus leading to good electrochemical performance. When evaluated as anode, WS2-NTs /GS hybrid could maintain a capacity of 318.6 mA/g over 500 cycles at a current density of 1A/g. Besides, the hybrid anode does not require any additional polymetric binder, conductive additives or a separate metal current-collector. The relatively high density of this hybrid is beneficial for high capacity per unit volume. Those characteristics make it a potential anode material for light and high performance lithium-ion batteries
- …
