442 research outputs found
Tunable variation of optical properties of polymer capped gold nanoparticles
Optical properties of polymer capped gold nanoparticles of various sizes
(diameter 3-6 nm) have been studied. We present a new scheme to extract size
dependent variation of total dielectric function of gold nanoparticles from
measured UV-Vis absorption data. The new scheme can also be used, in principle,
for other related systems as well. We show how quantum effect, surface atomic
co - ordination and polymer - nanoparticle interface morphology leads to a
systematic variation in inter band part of the dielectric function of gold
nanoparticles, obtained from the analysis using our new scheme. Careful
analysis enables identification of the possible changes to the electronic band
structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl
Low thermal conductivity of the layered oxide (Na,Ca)Co_2O_4: Another example of a phonon glass and an electron crystal
The thermal conductivity of polycrystalline samples of (Na,Ca)Co_2O_4 is
found to be unusually low, 20 mW/cmK at 280 K. On the assumption of the
Wiedemann-Franz law, the lattice thermal conductivity is estimated to be 18
mW/cmK at 280 K, and it does not change appreciably with the substitution of Ca
for Na. A quantitative analysis has revealed that the phonon mean free path is
comparable with the lattice parameters, where the point-defect scattering plays
an important role. Electronically the same samples show a metallic conduction
down to 4.2 K, which strongly suggests that NaCo_2O_4 exhibits a glass-like
poor thermal conduction together with a metal-like good electrical conduction.
The present study further suggests that a strongly correlated system with
layered structure can act as a material of a phonon glass and an electron
crystal.Comment: 5 pages 3 figures, to be published in Phys. Rev.
Bio-ecological studies of the mango stone weevil in southern Ghana
Field and laboratory studies were conducted to determine the distribution and biology of the mango stone weevil, Sternochetus mangiferae, in southern Ghana. The weevil was found in the coastal savanna and rain forest areas but appeared to be absent from the forest/savanna transition zones. All mango varieties were attacked within the infested zones, with higher rates of infestation in the more humid areas. Elsewhere, the weevil is reported to contribute substantially to premature fruit drop and causes reduction in yield. The eggs appear to be laid in young fruits over a period of time as some fruits recorded multiple infestations with all stages of development observable in a single fruit. In the laboratory both larvae and adults were reared on excised mango cotyledons, but it is doubtful that adults survive on cotyledons in the field. Larvae pupated for 6-7 days with a pre-pupal stage of 1-2 days. Adults are long lived and have been cultured in the laboratory for up to 6 months. Adults were found hibernating in cracks and crevices on trunks of old mango trees (> 20 years after planting). Similar hiding places could not be found on young trees (³ 10 years after planting). It is, thus, possible that trees other than mangoes provide hibernation sites for the weevil between fruiting seasons. Adult weevils readily accepted and climbed onto flowers but did not show any preference for bark, twigs, leaves or soil. The acceptance of the flowers by the adults seems to suggest that flowers may provide food and breeding sites. Infestation by the weevil did not affect fruit quality despite the high potential to disrupt the export trade in mangoes. The low quarantine rejection threshold of one fruit in 40 set in the export market suggests that solution to the problem posed by the weevil requires socioeconomic, political and scientific initiatives
Melanocortin-1 Receptor, Skin Cancer and Phenotypic Characteristics (M-SKIP) Project: Study Design and Methods for Pooling Results of Genetic Epidemiological Studies
Background: For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods: Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer development will be studied via logic regression modeling. Discussion: Methodological guidelines to correctly design and conduct pooled-analyses are needed to facilitate application of such methods, thus providing a better summary of the actual findings on specific fields
Melanocortin-1 receptor, skin cancer and phenotypic characteristics (M-SKIP) project
Background: For complex diseases like cancer, pooled-analysis of individual data represents a powerful tool to investigate the joint contribution of genetic, phenotypic and environmental factors to the development of a disease. Pooled-analysis of epidemiological studies has many advantages over meta-analysis, and preliminary results may be obtained faster and with lower costs than with prospective consortia. Design and methods. Based on our experience with the study design of the Melanocortin-1 receptor (MC1R) gene, SKin cancer and Phenotypic characteristics (M-SKIP) project, we describe the most important steps in planning and conducting a pooled-analysis of genetic epidemiological studies. We then present the statistical analysis plan that we are going to apply, giving particular attention to methods of analysis recently proposed to account for between-study heterogeneity and to explore the joint contribution of genetic, phenotypic and environmental factors in the development of a disease. Within the M-SKIP project, data on 10,959 skin cancer cases and 14,785 controls from 31 international investigators were checked for quality and recoded for standardization. We first proposed to fit the aggregated data with random-effects logistic regression models. However, for the M-SKIP project, a two-stage analysis will be preferred to overcome the problem regarding the availability of different study covariates. The joint contribution of MC1R variants and phenotypic characteristics to skin cancer dev
Effects of Cowpea mottle virus and Cucumber mosaic virus on six Soybean (Glycine max L.) cultivars
The study was carried out to determine the comparative pathogenic response of six cultivars of soybean; TGx 1844-18E, TGx 1448-2E, TGx 1910-8F, TGx 1019-2EN, TGx 1910-8F and TGx 1876-4E to single and mixed infections with cowpea mottle virus and cucumber mosaic virus. The experiment was conducted in the screenhouse at the crop production pavilion, Faculty of Agriculture, University of Ilorin, Ilorin, Kwara state Nigeria. The results of the experiment revealed that all soybean cultivars were susceptible to single and mixed infection of the two viruses but to seemingly different extent. The single infection with cowpea mottle virus (CMeV), however, caused the most severe symptoms on the soybean cultivars. Cucumber mosaic virus (CMV) alone was not as severe as the CMeV. The mixed infection of CMeV and CMV did not cause higher severity than CMeV alone indicating that there was little or no synergistic effect between the two viruses on soybean
Direct and plant community mediated effects of management intensity on annual nutrient leaching risk in temperate grasslands
Grassland management intensity influences nutrient cycling both directly, by changing nutrient inputs and outputs from the ecosystem, and indirectly, by altering the nutrient content, and the diversity and functional composition of plant and microbial communities. However, the relative importance of these direct and indirect processes for the leaching of multiple nutrients is poorly studied. We measured the annual leaching of nitrate, ammonium, phosphate and sulphate at a depth of 10 cm in 150 temperate managed grasslands using a resin method. Using Structural Equation Modeling, we distinguished between various direct and indirect effects of management intensity (i.e. grazing and fertilization) on nutrient leaching. We found that management intensity was positively associated with nitrate, ammonium and phosphate leaching risk both directly (i.e. via increased nutrient inputs) and indirectly, by changing the stoichiometry of soils, plants and microbes. In contrast, sulphate leaching risk was negatively associated with management intensity, presumably due to increased outputs with mowing and grazing. In addition, management intensification shifted plant communities towards an exploitative functional composition (characterized by high tissue turnover rates) and, thus, further promoted the leaching risk of inorganic nitrogen. Plant species richness was associated with lower inorganic nitrogen leaching risk, but most of its effects were mediated by stoichiometry and plant community functional traits. Maintaining and restoring diverse plant communities may therefore mitigate the increased leaching risk that management intensity imposes upon grasslands
Systematic study and uncertainty evaluation of P, T-odd molecular enhancement factors in BaF
A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic molecules containing heavy elements experience enhanced sensitivity to parity (P) and time-reversal (T)-violating phenomena, such as the eEDM and the scalar-pseudoscalar (S-PS) interaction between the nucleons and the electrons, and are thus promising candidates for measurements. The NL-eEDM collaboration is preparing an experiment to measure the eEDM and S-PS interaction in a slow beam of cold BaF molecules [P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018)]. Accurate knowledge of the electronic structure parameters, Wd and Ws, connecting the eEDM and the S-PS interaction to the measurable energy shifts is crucial for the interpretation of these measurements. In this work, we use the finite field relativistic coupled cluster approach to calculate the Wd and Ws parameters in the ground state of the BaF molecule. Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ±0.12×1024Hzecm for Wd and 8.29 ± 0.12 kHz for W
Identification of kinase modulators as host-directed therapeutics against intracellular methicillin-resistant Staphylococcus aureus
The increasing prevalence of antimicrobial-resistant Staphylococcus aureus strains, especially methicillin-resistant S. aureus (MRSA), poses a threat to successful antibiotic treatment. Unsuccessful attempts to develop a vaccine and rising resistance to last-resort antibiotics urge the need for alternative treatments. Host-directed therapy (HDT) targeting critical intracellular stages of S. aureus emerges as a promising alternative, potentially acting synergistically with antibiotics and reducing the risk of de novo drug resistance. We assessed 201 ATP-competitive kinase inhibitors from Published Kinase Inhibitor Sets (PKIS1 and PKIS2) against intracellular MRSA. Seventeen hit compounds were identified, of which the two most effective and well-tolerated hit compounds (i.e., GW633459A and GW296115X) were selected for further analysis. The compounds did not affect planktonic bacterial cultures, while they were active in a range of human cell lines of cervical, skin, lung, breast and monocyte origin, confirming their host-directed mechanisms. GW633459A, structurally related to lapatinib, exhibited an HDT effect on intracellular MRSA independently of its known human epidermal growth factor receptor (EGFR)/(HER) kinase family targets. GW296115X activated adenosine monophosphate-activated protein kinase (AMPK), thereby enhancing bacterial degradation via autophagy. Finally, GW296115X not only reduced MRSA growth in human cells but also improved the survival rates of MRSA-infected zebrafish embryos, highlighting its potential as HDT
- …
