965 research outputs found
Anisotropic Homogeneous Turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors
We present the first measurements of anisotropic statistical fluctuations in
perfectly homogeneous turbulent flows. We address both problems of
intermittency in anisotropic sectors and hierarchical ordering of anisotropies
on a direct numerical simulation of a three dimensional random Kolmogorov flow.
We achieved an homogeneous and anisotropic statistical ensemble by randomly
shifting the forcing phases. We observe high intermittency as a function of the
order of the velocity correlation within each fixed anisotropic sector and a
hierarchical organization of scaling exponents at fixed order of the velocity
correlation at changing the anisotropic sector.Comment: 6 pages, 3 eps figure
The Scaling Structure of the Velocity Statistics in Atmospheric Boundary Layer
The statistical objects characterizing turbulence in real turbulent flows
differ from those of the ideal homogeneous isotropic model.They
containcontributions from various 2d and 3d aspects, and from the superposition
ofinhomogeneous and anisotropic contributions. We employ the recently
introduceddecomposition of statistical tensor objects into irreducible
representations of theSO(3) symmetry group (characterized by and
indices), to disentangle someof these contributions, separating the universal
and the asymptotic from the specific aspects of the flow. The different
contributions transform differently under rotations and so form a complete
basis in which to represent the tensor objects under study. The experimental
data arerecorded with hot-wire probes placed at various heights in the
atmospheric surfacelayer. Time series data from single probes and from pairs of
probes are analyzed to compute the amplitudes and exponents of different
contributions to the second order statistical objects characterized by ,
and . The analysis shows the need to make a careful distinction
between long-lived quasi 2d turbulent motions (close to the ground) and
relatively short-lived 3d motions. We demonstrate that the leading scaling
exponents in the three leading sectors () appear to be different
butuniversal, independent of the positions of the probe, and the large
scaleproperties. The measured values of the exponent are , and .
We present theoretical arguments for the values of these exponents usingthe
Clebsch representation of the Euler equations; neglecting anomalous
corrections, the values obtained are 2/3, 1 and 4/3 respectively.Comment: PRE, submitted. RevTex, 38 pages, 8 figures included . Online (HTML)
version of this paper is avaliable at http://lvov.weizmann.ac.il
A numerical comparison of theories of violent relaxation
Using N-body simulations with a large set of massless test particles we
compare the predictions of two theories of violent relaxation, the well known
Lynden-Bell theory and the more recent theory by Nakamura. We derive ``weaken''
versions of both theories in which we use the whole equilibrium coarse-grained
distribution function as a constraint instead of the total energy constraint.
We use these weaken theories to construct expressions for the conditional
probability that a test particle initially at the phase-space
coordinate would end-up in the 'th macro-cell at equilibrium. We show
that the logarithm of the ratio is
directly proportional to the initial phase-space density for the
Lynden-Bell theory and inversely proportional to for the Nakamura
theory. We then measure using a set of N-body simulations of a
system undergoing a gravitational collapse to check the validity of the two
theories of violent relaxation. We find that both theories are at odds with the
numerical results, qualitatively and quantitatively.Comment: Replaced with a revised version, which is now accepted to MNRAS.
LaTeX, 12 pages, 6 figure
Universality and saturation of intermittency in passive scalar turbulence
The statistical properties of a scalar field advected by the non-intermittent
Navier-Stokes flow arising from a two-dimensional inverse energy cascade are
investigated. The universality properties of the scalar field are directly
probed by comparing the results obtained with two different types of injection
mechanisms. Scaling properties are shown to be universal, even though
anisotropies injected at large scales persist down to the smallest scales and
local isotropy is not fully restored. Scalar statistics is strongly
intermittent and scaling exponents saturate to a constant for sufficiently high
orders. This is observed also for the advection by a velocity field rapidly
changing in time, pointing to the genericity of the phenomenon. The persistence
of anisotropies and the saturation are both statistical signatures of the
ramp-and-cliff structures observed in the scalar field.Comment: 4 pages, 8 figure
Statistical conservation laws in turbulent transport
We address the statistical theory of fields that are transported by a
turbulent velocity field, both in forced and in unforced (decaying)
experiments. We propose that with very few provisos on the transporting
velocity field, correlation functions of the transported field in the forced
case are dominated by statistically preserved structures. In decaying
experiments (without forcing the transported fields) we identify infinitely
many statistical constants of the motion, which are obtained by projecting the
decaying correlation functions on the statistically preserved functions. We
exemplify these ideas and provide numerical evidence using a simple model of
turbulent transport. This example is chosen for its lack of Lagrangian
structure, to stress the generality of the ideas
Computing Topology Preservation of RBF Transformations for Landmark-Based Image Registration
In image registration, a proper transformation should be topology preserving.
Especially for landmark-based image registration, if the displacement of one
landmark is larger enough than those of neighbourhood landmarks, topology
violation will be occurred. This paper aim to analyse the topology preservation
of some Radial Basis Functions (RBFs) which are used to model deformations in
image registration. Mat\'{e}rn functions are quite common in the statistic
literature (see, e.g. \cite{Matern86,Stein99}). In this paper, we use them to
solve the landmark-based image registration problem. We present the topology
preservation properties of RBFs in one landmark and four landmarks model
respectively. Numerical results of three kinds of Mat\'{e}rn transformations
are compared with results of Gaussian, Wendland's, and Wu's functions
Inhomogeneous Anisotropic Passive Scalars
We investigate the behaviour of the two-point correlation function in the
context of passive scalars for non homogeneous, non isotropic forcing
ensembles. Exact analytical computations can be carried out in the framework of
the Kraichnan model for each anisotropic sector. It is shown how the
homogeneous solution is recovered at separations smaller than an intrinsic
typical lengthscale induced by inhomogeneities, and how the different Fourier
modes in the centre-of-mass variable recombine themselves to give a ``beating''
(superposition of power laws) described by Bessel functions. The pure power-law
behaviour is restored even if the inhomogeneous excitation takes place at very
small scales.Comment: 14 pages, 5 figure
Dark matter density profiles from the Jeans equation
We make a simple analytical study of radial profiles of dark matter
structures, with special attention to the question of the central radial
density profile. We let our theoretical assumptions be guided by results from
numerical simulations, and show that at any radius where both the radial
density profile, rho, and the phase-space-like density profile,
rho/sigma^epsilon, are exact power laws, the only allowed density slopes in
agreement with the spherical symmetric and isotropic Jeans equation are in the
range 1< beta <3, where beta = - dln(rho)/dln(r). We also allow for a radial
variation of these power laws, as well as anisotropy, and show how this allows
for more shallow central slopes.Comment: 4 pages, no figures, minor typos correcte
Statistical geometry in scalar turbulence
A general link between geometry and intermittency in passive scalar
turbulence is established. Intermittency is qualitatively traced back to events
where tracer particles stay for anomalousy long times in degenerate geometries
characterized by strong clustering. The quantitative counterpart is the
existence of special functions of particle configurations which are
statistically invariant under the flow. These are the statistical integrals of
motion controlling the scalar statistics at small scales and responsible for
the breaking of scale invariance associated to intermittency.Comment: 4 pages, 5 figure
- …
