11,143 research outputs found
Constraints on Dimensional Warped Spaces
In order to investigate the phenomenological implications of allowing gauge
fields to propagate in warped spaces of more than five dimensions, we consider
a toy model of a space warped by the presence of a anisotropic bulk
cosmological constant. After solving the Einstein equation, three classes of
solutions are found, those in which the additional () dimensions are
growing, shrinking or remaining constant. It is found that gauge fields
propagating in these spaces have a significantly different Kaluza Klein (KK)
mass spectrum and couplings from that of the Randall and Sundrum model. This
leads to a greatly reduced lower bound on the KK scale, arising from
electroweak constraints, for spaces growing towards the IR brane.Comment: 6 pages, 5 figures PASCOS2010 International Symposium proceedin
Do depressive symptoms predict cancer incidence?: 17-year follow-up of the Whitehall II study
Objective: To explore the association between depressive symptom history and cancer incidence.
Methods: Affective/emotional depressive symptoms were assessed using the General Health Questionnaire (GHQ-30) depression sub-scale across phase 1 (1985-1988), phase 2 (1989-1990), and phase 3 (1991-1994) of the Whitehall II prospective cohort study; ‘chronic’= depressive episode at phase 1, 2 and 3; ‘new’= depressive episode at phase 3 only. Cancer Incidence was obtained from the National Health Service Central Register with an average follow-up of 15.6 years (range 0.08–17.4). The study sample consisted of 6983 participants, aged 35–55 years at baseline. Results were adjusted for age, sex, socio-economic position, health behaviours, health status/conditions, medication, and social support.
Results: Over a 17.4 year follow-up, chronic depressive symptoms did not increase the risk of cancer incidence compared to those who never experienced symptoms (hazard ratio (HR)=1.03, 95% confidence interval (CI): 0.71-1.49). Participants who experienced new depressive symptoms had an increased risk of cancer incidence in the first 9 years of follow-up (HR=1.89, 95% CI: 1.23-2.90) but no increased risk in later years (HR=0.84, 95% CI: 0.52-1.35).
Conclusion: Chronic depressive symptoms were not associated with cancer incidence. In contrast, new-onset symptoms were associated with a substantially increased risk, possibly due to reverse causality
Relationship between Local Molecular Field Theory and Density Functional Theory for non-uniform liquids
The Local Molecular Field Theory (LMF) developed by Weeks and co-workers has
proved successful for treating the structure and thermodynamics of a variety of
non-uniform liquids. By reformulating LMF in terms of one-body direct
correlation functions we recast the theory in the framework of classical
Density Functional Theory (DFT). We show that the general LMF equation for the
effective reference potential phi_R follows directly from the standard
mean-field DFT treatment of attractive interatomic forces. Using an accurate
(Fundamental Measures) DFT for the non-uniform hard-sphere reference fluid we
determine phi_R for a hard-core Yukawa liquid adsorbed at a planar hard wall.
In the approach to bulk liquid-gas coexistence we find the effective potentials
exhibit rich structure that can include damped oscillations at large distances
from the wall as well as the repulsive hump near the wall required to generate
the low density 'gas' layer characteristic of complete drying. We argue that it
would be difficult to obtain the same level of detail from other (non DFT
based) implementations of LMF. LMF emphasizes the importance of making an
intelligent division of the interatomic pair potential of the full system into
a reference part and a remainder that can be treated in mean-field
approximation. We investigate different divisions for an exactly solvable one-
dimensional model where the pair potential has a hard-core plus a linear
attractive tail. Results for the structure factor and the equation of state of
the uniform fluid show that including a significant portion of the attraction
in the reference system can be much more accurate than treating the full
attractive tail in mean-field approximation. We discuss further aspects of the
relationship between LMF and DFT.Comment: 35 pages, 10 Fig
Generation of defects and disorder from deeply quenching a liquid to form a solid
We show how deeply quenching a liquid to temperatures where it is linearly
unstable and the crystal is the equilibrium phase often produces crystalline
structures with defects and disorder. As the solid phase advances into the
liquid phase, the modulations in the density distribution created behind the
advancing solidification front do not necessarily have a wavelength that is the
same as the equilibrium crystal lattice spacing. This is because in a deep
enough quench the front propagation is governed by linear processes, but the
crystal lattice spacing is determined by nonlinear terms. The wavelength
mismatch can result in significant disorder behind the front that may or may
not persist in the latter stage dynamics. We support these observations by
presenting results from dynamical density functional theory calculations for
simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure
The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect
In classical density functional theory (DFT) the part of the Helmholtz free
energy functional arising from attractive inter-particle interactions is often
treated in a mean-field or van der Waals approximation. On the face of it, this
is a somewhat crude treatment as the resulting functional generates the simple
random phase approximation (RPA) for the bulk fluid pair direct correlation
function. We explain why using standard mean-field DFT to describe
inhomogeneous fluid structure and thermodynamics is more accurate than one
might expect based on this observation. By considering the pair correlation
function and structure factor of a one-dimensional model fluid,
for which exact results are available, we show that the mean-field DFT,
employed within the test-particle procedure, yields results much superior to
those from the RPA closure of the bulk Ornstein-Zernike equation. We argue that
one should not judge the quality of a DFT based solely on the approximation it
generates for the bulk pair direct correlation function.Comment: 9 pages, 3 figure
Theoretical Procedures and Elder-Vass's Critical Realist Ontology
This article scrutinizes some theoretical procedures prevalent in the philosophy of social science. These procedures are exemplified in Elder-Vass’s critical realism, which promises to place the social sciences on a sound ontological footing. The article focuses on the way that Elder-Vass’s general emergentist ontology is constituted and on the methods through which it is applied to society. It is contended that the ontology is not and could not be grounded in science and that its philosophical use distorts what it is applied to. The incoherent methods that social ontological projects constitutionally rely on entail that they cannot ground social scientific explanation
Calcutta Botanic Garden and the colonial re-ordering of the Indian environment
This article examines three hand-painted colour maps that accompanied the annual report of the Calcutta Botanic Garden for 1846 to illustrate how the Garden’s layout, uses and functions had changed over the previous 30 years. The evolution of the Calcutta Botanic Garden in the first half of the nineteenth-century reflects a wider shift in attitudes regarding the relationship between science, empire and the natural world. On a more human level the maps result from, and illustrate, the development of a vicious personal feud between the two eminent colonial botanists charged with superintending the garden in the 1840s
Augmented collisional ionization via excited states in XUV cluster interactions
The impact of atomic excited states is investigated via a detailed model of
laser-cluster interactions, which is applied to rare gas clusters in intense
femtosecond pulses in the extreme ultraviolet (XUV). This demonstrates the
potential for a two-step ionization process in laser-cluster interactions, with
the resulting intermediate excited states allowing for the creation of high
charge states and the rapid dissemination of laser pulse energy. The
consequences of this excitation mechanism are demonstrated through simulations
of recent experiments in argon clusters interacting with XUV radiation, in
which this two-step process is shown to play a primary role; this is consistent
with our hypothesis that XUV-cluster interactions provide a unique window into
the role of excited atomic states due to the relative lack of photoionization
and laser field-driven phenomena. Our analysis suggests that atomic excited
states may play an important role in interactions of intense radiation with
materials in a variety of wavelength regimes, including potential implications
for proposed studies of single molecule imaging with intense X-rays.Comment: 4 pages, 2 figure
Dynamical density functional theory for dense atomic liquids
Starting from Newton's equations of motion, we derive a dynamical density
functional theory (DDFT) applicable to atomic liquids. The theory has the
feature that it requires as input the Helmholtz free energy functional from
equilibrium density functional theory. This means that, given a reliable
equilibrium free energy functional, the correct equilibrium fluid density
profile is guaranteed. We show that when the isothermal compressibility is
small, the DDFT generates the correct value for the speed of sound in a dense
liquid. We also interpret the theory as a dynamical equation for a coarse
grained fluid density and show that the theory can be used (making further
approximations) to derive the standard mode coupling theory that is used to
describe the glass transition. The present theory should provide a useful
starting point for describing the dynamics of inhomogeneous atomic fluids.Comment: 14 pages, accepted for publication in J. Phys.: Condens. Matte
- …
