2,240 research outputs found

    The solar differential rotation in the 18th century

    Full text link
    The sunspot drawings of Johann Staudacher of 1749--1799 were used to determine the solar differential rotation in that period. These drawings of the full disk lack any indication of their orientation. We used a Bayesian estimator to obtain the position angles of the drawings, the corresponding heliographic spot positions, a time offset between the drawings and the differential rotation parameter \delta\Omega, assuming the equatorial rotation period is the same as today. The drawings are grouped in pairs, and the resulting marginal distributions for \delta\Omega were multiplied. We obtain \delta\Omega=-0.048 \pm 0.025 d^-1 (-2.75^o/d) for the entire period. There is no significant difference to the value of the present Sun. We find an (insignificant) indication for a change of \delta\Omega throughout the observing period from strong differential rotation, \delta\Omega\approx -0.07 d^-1, to weaker differential rotation, \delta\Omega\approx-0.04 d^-1.Comment: 6 pages, 6 figures, accepted for Astronomy and Astrophysic

    Width of Sunspot Generating Zone and Reconstruction of Butterfly Diagram

    Full text link
    Based on the extended Greenwich-NOAA/USAF catalogue of sunspot groups it is demonstrated that the parameters describing the latitudinal width of the sunspot generating zone (SGZ) are closely related to the current level of solar activity, and the growth of the activity leads to the expansion of SGZ. The ratio of the sunspot number to the width of SGZ shows saturation at a certain level of the sunspot number, and above this level the increase of the activity takes place mostly due to the expansion of SGZ. It is shown that the mean latitudes of sunspots can be reconstructed from the amplitudes of solar activity. Using the obtained relations and the group sunspot numbers by Hoyt and Schatten (1998), the latitude distribution of sunspot groups ("the Maunder butterfly diagram") for the 18th and the first half of the 19th centuries is reconstructed and compared with historical sunspot observations.Comment: 16 pages, 11 figures; accepted by Solar Physics; the final publication will be available at www.springerlink.co

    Dynamics of F=2 Spinor Bose-Einstein Condensates

    Full text link
    We experimentally investigate and analyze the rich dynamics in F=2 spinor Bose-Einstein condensates of Rb87. An interplay between mean-field driven spin dynamics and hyperfine-changing losses in addition to interactions with the thermal component is observed. In particular we measure conversion rates in the range of 10^-12 cm^3/s for spin changing collisions within the F=2 manifold and spin-dependent loss rates in the range of 10^-13 cm^3/s for hyperfine-changing collisions. From our data we observe a polar behavior in the F=2 ground state of Rb87, while we measure the F=1 ground state to be ferromagnetic. Furthermore we see a magnetization for condensates prepared with non-zero total spin.Comment: 4 pages, 2 figures, RevTe

    A Simple Method to Check the Reliability of Annual Sunspot Number in the Historical Period 1610-1847

    Full text link
    A simple method to detect inconsistencies in low annual sunspot numbers based on the relationship between these values and the annual number of active days is described. The analysis allowed for the detection of problems in the annual sunspot number series clustered in a few specific periods and unambiguous, namely: i) before Maunder minimum, ii) the year 1652 during the Maunder minimum, iii) the year 1741 in Solar Cycle -1, and iv) the so-called "lost" solar cycle in 1790s and subsequent onset of the Dalton Minimum.Comment: 15 pages, 3 figures, to be published in Solar Physic

    Space-charge mechanism of aging in ferroelectrics: an exactly solvable two-dimensional model

    Full text link
    A mechanism of point defect migration triggered by local depolarization fields is shown to explain some still inexplicable features of aging in acceptor doped ferroelectrics. A drift-diffusion model of the coupled charged defect transport and electrostatic field relaxation within a two-dimensional domain configuration is treated numerically and analytically. Numerical results are given for the emerging internal bias field of about 1 kV/mm which levels off at dopant concentrations well below 1 mol%; the fact, long ago known experimentally but still not explained. For higher defect concentrations a closed solution of the model equations in the drift approximation as well as an explicit formula for the internal bias field is derived revealing the plausible time, temperature and concentration dependencies of aging. The results are compared to those due to the mechanism of orientational reordering of defect dipoles.Comment: 8 pages, 4 figures. accepted to Physical Review

    Phase Fluctuations in Bose-Einstein Condensates

    Full text link
    We demonstrate the existence of phase fluctuations in elongated Bose-Einstein Condensates (BECs) and study the dependence of those fluctuations on the system parameters. A strong dependence on temperature, atom number, and trapping geometry is observed. Phase fluctuations directly affect the coherence properties of BECs. In particular, we observe instances where the phase coherence length is significantly smaller than the condensate size. Our method of detecting phase fluctuations is based on their transformation into density modulations after ballistic expansion. An analytic theory describing this transformation is developed.Comment: 11 pages, 7 figure

    Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries

    Full text link
    Migration of charged point defects triggered by the local random depolarization field is shown to plausibly explain aging of poled ferroelectric ceramics providing reasonable time and acceptor concentration dependences of the emerging internal bias field. The theory is based on the evaluation of the energy of the local depolarization field caused by mismatch of the polarizations of neighbor grains. The kinetics of charge migration assumes presence of mobile oxygen vacancies in the material due to the intentional or unintentional acceptor doping. Satisfactory agreement of the theory with experiment on the Fe-doped lead zirconate titanate is demonstrated.Comment: theory and experiment, 22 pages, 3 figure

    Dropping cold quantum gases on Earth over long times and large distances

    Full text link
    We describe the non-relativistic time evolution of an ultra-cold degenerate quantum gas (bosons/fermions) falling in Earth's gravity during long times (10 sec) and over large distances (100 m). This models a drop tower experiment that is currently performed by the QUANTUS collaboration at ZARM (Bremen, Germany). Starting from the classical mechanics of the drop capsule and a single particle trapped within, we develop the quantum field theoretical description for this experimental situation in an inertial frame, the corotating frame of the Earth, as well as the comoving frame of the drop capsule. Suitable transformations eliminate non-inertial forces, provided all external potentials (trap, gravity) can be approximated with a second order Taylor expansion around the instantaneous trap center. This is an excellent assumption and the harmonic potential theorem applies. As an application, we study the quantum dynamics of a cigar-shaped Bose-Einstein condensate in the Gross-Pitaevskii mean-field approximation. Due to the instantaneous transformation to the rest-frame of the superfluid wave packet, the long-distance drop (100m) can be studied easily on a numerical grid.Comment: 18 pages latex, 5 eps figures, submitte

    Characterization and control of phase fluctuations in elongated Bose-Einstein condensates

    Full text link
    Quasi one dimensional Bose-Einstein condensates (BECs) in elongated traps exhibit significant phase fluctuations even at very low temperatures. We present recent experimental results on the dynamic transformation of phase fluctuations into density modulations during time-of-flight and show the excellent quantitative agreement with the theoretical prediction. In addition we confirm that under our experimental conditions, in the magnetic trap density modulations are strongly suppressed even when the phase fluctuates. The paper also discusses our theoretical results on control of the condensate phase by employing a time-dependent perturbation. Our results set important limitations on future applications of BEC in precision atom interferometry and atom optics, but at the same time suggest pathways to overcome these limitations.Comment: 9 pages, 7 figure

    Optical dipole traps and atomic waveguides based on Bessel light beams

    Full text link
    We theoretically investigate the use of Bessel light beams generated using axicons for creating optical dipole traps for cold atoms and atomic waveguiding. Zeroth-order Bessel beams can be used to produce highly elongated dipole traps allowing for the study of one-dimensional trapped gases and realization of a Tonks gas of impentrable bosons. First-order Bessel beams are shown to be able to produce tight confined atomic waveguides over centimeter distances.Comment: 20 pages, 5 figures, to appear in Phys. Rev.
    corecore