9,083 research outputs found
Coast-ocean-atmosphere-ocean mesoscale interaction
In the case of cold air outbreaks, the combination of the coastal shape and the sea surface temperature (SST) pattern have a profound effect in establishing a low level mesoscale atmospheric circulation as a result of differential heating due to both variations in overwater path length and the SST. A convergence (or divergence) line then forms along a line exactly downwind of the major bend in the coastline. All this is consistent with the structure of the cloud patterns seen in a high resolution Landsat picture of the cloud streets and the major features are simulated well with a boundary layer model. The dominant convergence line is marked by notably larger clouds. To its east the convective roll clouds grow downstream in accord with the deepening of the boundary layer. To its west (i.e., coastal side) where the induced pressure field forces a strong westerly component in the boundary layer, the wind shear across the inversion gives rise to Kelvin-Helmholtz waves and billow clouds whose orientation is perpendicular to the shear vector and to the major convergence line. The induced mesoscale circulation will feedback on the ocean by intensifying the wind generated ocean wave growth and altering their orientation. Coastal cyclogenesis is due in large part not only to the fluxes of heat and moisture from the ocean, but particularly to the differential heating and moistening of the boundary layer air when the air trajectories pass over a well defined pattern of SST
Upgrade of the ATLAS Muon Trigger for the SLHC
The outer shell of the ATLAS experiment at the LHC consists of a system of
toroidal air-core magnets in order to allow for the precise measurement of the
transverse momentum p of muons, which in many physics channels are a
signature of interesting physics processes. For the precise determination of
the muon momentum Monitored Drift Tube chambers (MDT) with high position
accuracy are used, while for the fast identification of muon tracks chambers
with high time resolution are used, able to select muons above a predefined
p threshold for use in the first Level of the ATLAS triggering system
(Level-1 trigger). When the luminosity of the LHC will be upgraded to 4-5 times
the present nominal value (SLHC) in about a decade from now, an improvement of
the selectivity of the ATLAS Level-1 triggering system will be mandatory in
order to cope with the maximum allowed trigger rate of 100 kHz. For the Level-1
trigger of the ATLAS muon spectrometer this means an increase of the p
threshold for single muons. Due to the limited spatial resolution of the
trigger chambers, however, the selectivity for tracks above ~20 GeV/c is
insufficient for an effective reduction of the Level-1 rate. We describe how
the track coordinates measured in the MDT precision chambers can be used to
decisively improve the selectivity for high momentum tracks. The resulting
increase in latency will also be discussed.Comment: These are the proceedings of a presentation given at the Topical
Workshop of Electronics for Particle Physics 2010 in Aachen, Germany (sept.,
20-24, 2010
Constraining SUSY Dark Matter with the ATLAS Detector at the LHC
In the event that R-Parity conserving supersymmetry (SUSY) is discovered at
the LHC, a key issue which will need to be addressed will be the consistency of
that signal with astrophysical and non-accelerator constraints on SUSY Dark
Matter. This issue is studied for the SPS1a mSUGRA benchmark model by using
measurements of end-points and thresholds in the invariant mass spectra of
various combinations of leptons and jets in ATLAS to constrain the model
parameters. These constraints are then used to assess the statistical accuracy
with which quantities such as the Dark Matter relic density and direct
detection cross-section can be measured. Systematic effects arising from the
use of different mSUGRA RGE codes are also estimated. Results indicate that for
SPS1a a statistical(systematic) precision on the relic abundance ~ 2.8% (3 %)
can be obtained given 300 fb-1 of data.Comment: 11 pages, 10 encapsulated postscript figures. Minor modification to
ref
First global analysis of SEASAT scatterometer winds and potential for meteorological research
The first global wind fields from SEASAT-A scatterometer (SASS) data were produced. Fifteen days of record are available on tape, with unique wind directions indicated for each observation. The methodology of the production of this data set is described, as well as the testing of its validity. A number of displays of the data, on large and small scales, analyzed and gridded, are provided
Multiple Parton Interactions, top--antitop and W+4j production at the LHC
The expected rate for Multiple Parton Interactions (MPI) at the LHC is large.
This requires an estimate of their impact on all measurement foreseen at the
LHC while opening unprecendented opportunities for a detailed study of these
phenomena. In this paper we examine the MPI background to top-antitop
production, in the semileptonic channel, in the early phase of data taking when
the full power of --tagging will not be available. The MPI background turns
out to be small but non negligible, of the order of 20% of the background
provided by W+4j production through a Single Parton Interaction. We then
analyze the possibility of studying Multiple Parton Interactions in the W+4j
channel, a far more complicated setting than the reactions examined at lower
energies. The MPI contribution turns out to be dominated by final states with
two energetic jets which balance in transverse momentum, and it appears
possible, thanks to the good angular resolution of ATLAS and CMS, to separate
the Multiple Parton Interactions contribution from Single Parton Interaction
processes. The large cross section for two jet production suggests that also
Triple Parton Interactions (TPI) could provide a non negligible contribution.
Our preliminary analysis suggests that it might be indeed possible to
investigate TPI at the LHC.Comment: Typos fixed. Published in JHE
Searching for the Kaluza-Klein Graviton in Bulk RS Models
The best-studied version of the RS1 model has all the Standard Model
particles confined to the TeV brane. However, recent variants have the Standard
Model fermions and gauge bosons located in the bulk five-dimensional spacetime.
We study the potential reach of the LHC in searching for the lightest KK
partner of the graviton in the most promising such models in which the
right-handed top is localized very near the TeV brane and the light fermions
are localized near the Planck brane. We consider both detection and the
establishment of the spin-2 nature of the resonance should it be found.Comment: 17 pages, 6 figures - JHEP published version, figures added,
branching ratio correcte
Reply to "Comment on 'Long-term atmospheric measurements of C1-C5 alkyl nitrates in the Pearl River Delta region of southeast China'"
Department of Civil and Environmental Engineerin
Dark matter searches at LHC
Besides Standard Model measurements and other Beyond Standard Model studies,
the ATLAS and CMS experiments at the LHC will search for Supersymmetry, one of
the most attractive explanation for dark matter. The SUSY discovery potential
with early data is presented here together with some first results obtained
with 2010 collision data at 7 TeV. Emphasis is placed on measurements and
parameter determination that can be performed to disentangle the possible SUSY
models and SUSY look-alike and the interpretation of a possible positive
supersymmetric signal as an explanation of dark matter.Comment: 15 pages, 14 figures, Invited plenary talk given at DISCRETE 2010:
Symposium On Prospects In The Physics Of Discrete Symmetries, 6-11 Dec 2010,
Rome, Ital
Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs
Simple supersymmetric grand unified models based on the gauge group SO(10)
require --in addition to gauge and matter unification-- the unification of
t-b-\tau Yukawa couplings. Yukawa unification, however, only occurs for very
special values of the soft SUSY breaking parameters. We perform a search using
a Markov Chain Monte Carlo (MCMC) technique to investigate model parameters and
sparticle mass spectra which occur in Yukawa-unified SUSY models, where we also
require the relic density of neutralino dark matter to saturate the
WMAP-measured abundance. We find the spectrum is characterizd by three mass
scales: first/second generation scalars in the multi-TeV range, third
generation scalars in the TeV range, and gauginos in the \sim 100 GeV range.
Most solutions give far too high a relic abundance of neutralino dark matter.
The dark matter discrepancy can be rectified by 1. allowing for neutralino
decay to axino plus photon, 2. imposing gaugino mass non-universality or 3.
imposing generational non-universality. In addition, the MCMC approach finds 4.
a compromise solution where scalar masses are not too heavy, and where
neutralino annihilation occurs via the light Higgs h resonance. By imposing
weak scale Higgs soft term boundary conditions, we are also able to generate 5.
low \mu, m_A solutions with neutralino annihilation via a light A resonance,
though these solutions seem to be excluded by CDF/D0 measurements of the B_s\to
\mu^+\mu^- branching fraction. Based on the dual requirements of Yukawa
coupling unification and dark matter relic density, we predict new physics
signals at the LHC from pair production of 350--450 GeV gluinos. The events are
characterized by very high b-jet multiplicity and a dilepton mass edge around
mz2-mz1 \sim 50-75 GeV.Comment: 35 pages with 21 eps figure
- …
