2,427 research outputs found
When All is Said and Done, How Should You Play and What Should You Expect?
Modern game theory was born in 1928, when John von Neumann published his Minimax Theorem. This theorem ascribes to all two-person zero-sum games a value–what rational players may expect–and optimal strategies–how they should play to achieve that expectation. Seventyseven years later, strategic game theory has not gotten beyond that initial point, insofar as the basic questions of value and optimal strategies are concerned. Equilibrium theories do not tell players how to play and what to expect; even when there is a unique Nash equilibrium, it it is not at all clear that the players “should” play this equilibrium, nor that they should expect its payoff. Here, we return to square one: abandon all ideas of equilibrium and simply ask, how should rational players play, and what should they expect. We provide answers to both questions, for all n-person games in strategic form.
Sum Rules of the Multiple Giant Dipole States
Various sum rules for multiple giant dipole resonance states are derived. For
the triple giant dipole resonance states, the energy-weighted sum of the
transition strengths requires a model to be related to those of the single and
double giant dipole resonance states. It is also shown that the non-diagonal
matrix elements of the double commutator between the dipole operator and the
nuclear Hamiltonian give useful identities for the excitation energy and
transition strength of each excited state. Using those identities, the
relationship between width of the single dipole state and those of the multiple
ones is qualitatively discussed.Comment: 8 pages, 1 figure, using PTPTeX styl
Anharmonicities of giant dipole excitations
The role of anharmonic effects on the excitation of the double giant dipole
resonance is investigated in a simple macroscopic model.Perturbation theory is
used to find energies and wave functions of the anharmonic ascillator.The cross
sections for the electromagnetic excitation of the one- and two-phonon giant
dipole resonances in energetic heavy-ion collisions are then evaluated through
a semiclassical coupled-channel calculation.It is argued that the variations of
the strength of the anharmonic potential should be combined with appropriate
changes in the oscillator frequency,in order to keep the giant dipole resonance
energy consistent with the experimental value.When this is taken into
account,the effects of anharmonicities on the double giant dipole resonance
excitation probabilities are small and cannot account for the well-known
discrepancy between theory and experiment
Algorithmic Bayesian Persuasion
Persuasion, defined as the act of exploiting an informational advantage in
order to effect the decisions of others, is ubiquitous. Indeed, persuasive
communication has been estimated to account for almost a third of all economic
activity in the US. This paper examines persuasion through a computational
lens, focusing on what is perhaps the most basic and fundamental model in this
space: the celebrated Bayesian persuasion model of Kamenica and Gentzkow. Here
there are two players, a sender and a receiver. The receiver must take one of a
number of actions with a-priori unknown payoff, and the sender has access to
additional information regarding the payoffs. The sender can commit to
revealing a noisy signal regarding the realization of the payoffs of various
actions, and would like to do so as to maximize her own payoff assuming a
perfectly rational receiver.
We examine the sender's optimization task in three of the most natural input
models for this problem, and essentially pin down its computational complexity
in each. When the payoff distributions of the different actions are i.i.d. and
given explicitly, we exhibit a polynomial-time (exact) algorithm, and a
"simple" -approximation algorithm. Our optimal scheme for the i.i.d.
setting involves an analogy to auction theory, and makes use of Border's
characterization of the space of reduced-forms for single-item auctions. When
action payoffs are independent but non-identical with marginal distributions
given explicitly, we show that it is #P-hard to compute the optimal expected
sender utility. Finally, we consider a general (possibly correlated) joint
distribution of action payoffs presented by a black box sampling oracle, and
exhibit a fully polynomial-time approximation scheme (FPTAS) with a bi-criteria
guarantee. We show that this result is the best possible in the black-box model
for information-theoretic reasons
Simulation studies of improved sounding systems
Two instrument designs for indirect satellite sounding of the atmosphere in the infrared are represented by the High Resolution Infra-Red Sounder, Model 2 (HIRS-2) and by the Advanced Meteorological Temperature Sounder (AMTS). The relative capabilities of the two instruments were tested by simulating satellite measurements from a group of temperature soundings, allowing the two participants to retrieve the temperature profiles from the simulated data, and comparing the results with the original temperature profiles. Four data sets were produced from radiosondes data extrapolated to a suitable altitude, representing continents and oceans, between 30S and 30N. From the information available, temperature profiles were retrieved by two different methods, statistical regression and inversion of the radiative transfer equation. Results show the consequence of greater spectral purity, concomitant increase in the number of spectral intervals, and the better spatial resolution in partly clouded areas. At the same time, the limitation of the HIRS-2 without its companion instrument leads to some results which should be ignored in comparing the two instruments. A clear superiority of AMTS results is shown
Creation of ventricular septal defects on the beating heart in a new pig model
Background/ Aims: So far, surgical and interventional therapies for muscular ventricular septal defects ( mVSDs) beyond the moderator band have had their limitations. Thus, alternative therapeutic strategies should be developed. We present a new animal model for the evaluation of such strategies. Methods: In a pig model ( n = 9), anterolateral thoracotomy was performed for exposure of the left ventricle. mVSDs were created under two- and three- dimensional echocardiography with a 7.5- mm sharp punch instrument, which was forwarded via a left ventricular puncture without extracorporeal circulation. Results: Creation of mVSDs was successful in all animals ( n = 9) confirmed by echocardiography, hemodynamic measurements and autopsy. The defects were located in the midmuscular ( n = 4), apical ( n = 1), inlet ( n = 2) and anterior part ( n = 2) of the muscular septum. All animals were hemodynamically stable for further procedures. The diameter and shunt volume of the mVSDs were 4.8 - 7.3 mm ( mean: 5.9 mm) and 12.9 - 41.3% ( mean: 22.1%), respectively. Autopsy confirmed in all animals the creation of a substantial defect. Conclusion: The described new technique for creation of an mVSD on the beating heart in a pig model is suitable for the evaluation of new therapeutic strategies for mVSD closure. Copyright (C) 2008 S. Karger AG, Basel
Neutron radioactivity—Lifetime measurements of neutron-unbound states
A new technique to measure the lifetime τ of a neutron-radioactive nucleus that decays in-flight via neutron emission is presented and demonstrated utilizing MonteCarlo simulations. The method is based on the production of the neutron-unbound nucleus in a target, which at the same time slows down the produced nucleus and the residual nucleus after (multi-) neutron emission. The spectrum of the velocity difference of neutron(s) and the residual nucleus has a characteristic shape, that allows to extract the lifetime. If the decay happens outside the target there will be a peak in the spectrum, while events where the decay is in the target show a broad flat distribution due to the continuous slowing down of the residual nucleus. The method itself and the analysis procedure are discussed in detail for the specific candidate 26O. A stack of targets with decreasing target thicknesses can expand the measurable lifetime range and improve the sensitivity by increasing the ratio between decays outside and inside the target. The simulations indicate a lower limit of measurable lifetime τ∼0.2 ps for the given conditions
- …
