730 research outputs found
An improved cosmic crystallography method to detect holonomies in flat spaces
A new, improved version of a cosmic crystallography method for constraining
cosmic topology is introduced. Like the circles-in-the-sky method using CMB
data, we work in a thin, shell-like region containing plenty of objects. Two
pairs of objects (quadruplet) linked by a holonomy show a specific distribution
pattern, and three filters of \emph{separation, vectorial condition}, and
\emph{lifetime of objects} extract these quadruplets. Each object is
assigned an integer , which is the number of candidate quadruplets
including as their members. Then an additional device of -histogram
is used to extract topological ghosts, which tend to have high values of .
In this paper we consider flat spaces with Euclidean geometry, and the filters
are designed to constrain their holonomies. As the second filter, we prepared
five types that are specialized for constraining specific holonomies: one for
translation, one for half-turn corkscrew motion and glide reflection, and three
for -th turn corkscrew motion for and 6. {Every multiconnected
space has holonomies that are detected by at least one of these five filters.}
Our method is applied to the catalogs of toy quasars in flat -CDM
universes whose typical sizes correspond to . With these simulations
our method is found to work quite well. {These are the situations in which
type-II pair crystallography methods are insensitive because of the tiny number
of ghosts. Moreover, in the flat cases, our method should be more sensitive
than the type-I pair (or, in general, -tuplet) methods because of its
multifilter construction and its independence from .}Comment: 12 pages, 8 figures, accepted for publication in A&A (2011
Permalloy-based carbon nanotube spin-valve
In this Letter we demonstrate that Permalloy (Py), a widely used Ni/Fe alloy,
forms contacts to carbon nanotubes (CNTs) that meet the requirements for the
injection and detection of spin-polarized currents in carbon-based spintronic
devices. We establish the material quality and magnetization properties of Py
strips in the shape of suitable electrical contacts and find a sharp
magnetization switching tunable by geometry in the anisotropic
magnetoresistance (AMR) of a single strip at cryogenic temperatures. In
addition, we show that Py contacts couple strongly to CNTs, comparable to Pd
contacts, thereby forming CNT quantum dots at low temperatures. These results
form the basis for a Py-based CNT spin-valve exhibiting very sharp resistance
switchings in the tunneling magnetoresistance, which directly correspond to the
magnetization reversals in the individual contacts observed in AMR experiments.Comment: 3 page
On the possibility for constraining cosmic topology from the celestial distribution of astronomical objects
We present a method to constrain cosmic topology from the distribution of
astronomical objects projected on the celestial sphere. This is an extension of
the 3D method introduced in Fujii & Yoshii (2011) that is to search for a pair
of pairs of observed objects (quadruplet) linked by a holonomy, i.e., the
method we present here is to search for a pair of celestial sphere -tuplets
for . We find, however, that this method is impractical to apply in
realistic situations due to the small signal to noise ratio. We conclude
therefore that it is unrealistic to constrain the topology of the Universe from
the celestial distribution, and the 3D catalogs are necessary for the purpose.Comment: 4 pages, 1 figure, accepted for publication in A&A (2011
Cosmic microwave anisotropies in an inhomogeneous compact flat universe
The anisotropies of the cosmic microwave background (CMB) are computed for
the half-turn space E_2 which represents a compact flat model of the Universe,
i.e. one with finite volume. This model is inhomogeneous in the sense that the
statistical properties of the CMB depend on the position of the observer within
the fundamental cell. It is shown that the half-turn space describes the
observed CMB anisotropies on large scales better than the concordance model
with infinite volume. For most observer positions it matches the temperature
correlation function even slightly better than the well studied 3-torus
topology
Numerical computation of Maass waveforms and an application to cosmology
We compute numerically eigenvalues and eigenfunctions of the Laplacian in a
three-dimensional hyperbolic space. Applying the results to cosmology, we
demonstrate that the methods learned in quantum chaos can be used in other
fields of research.Comment: A version of the paper with high resolution figures is available at
http://www.physik.uni-ulm.de/theo/qc/publications.htm
Hot pixel contamination in the CMB correlation function?
Recently, it was suggested that the map-making procedure, which is applied to
the time-ordered CMB data by the WMAP team, might be flawed by hot pixels. This
could lead to a bias in the pixels having an angular distance of about 141
degrees from hot pixels due to the differential measuring process of the
satellite WMAP. Here, the bias is confirmed, and the temperature two-point
correlation function C(theta) is reevaluated by excluding the affected pixels.
It is shown that the most significant effect occurs in C(theta) at the largest
angles near theta = 180 degrees. Furthermore, the corrected correlation
function C(theta) is applied to the cubic topology of the Universe, and it is
found that such a multi-connected universe matches the temperature correlation
better than the LCDM concordance model, provided the cubic length scale is
close to L=4 measured in units of the Hubble length
Level spacings and periodic orbits
Starting from a semiclassical quantization condition based on the trace
formula, we derive a periodic-orbit formula for the distribution of spacings of
eigenvalues with k intermediate levels. Numerical tests verify the validity of
this representation for the nearest-neighbor level spacing (k=0). In a second
part, we present an asymptotic evaluation for large spacings, where consistency
with random matrix theory is achieved for large k. We also discuss the relation
with the method of Bogomolny and Keating [Phys. Rev. Lett. 77 (1996) 1472] for
two-point correlations.Comment: 4 pages, 2 figures; major revisions in the second part, range of
validity of asymptotic evaluation clarifie
A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models
Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently
regained interest as a good fit to the observed cosmic microwave background
temperature fluctuations. However, it is generally thought that a globally,
exactly-flat FLRW model is theoretically improbable. Here, in order to obtain a
probability space on the set F of compact, comoving, 3-spatial sections of FLRW
models, a physically motivated hypothesis is proposed, using the density
parameter Omega as a derived rather than fundamental parameter. We assume that
the processes that select the 3-manifold also select a global mass-energy and a
Hubble parameter. The inferred range in Omega consists of a single real value
for any 3-manifold. Thus, the obvious measure over F is the discrete measure.
Hence, if the global mass-energy and Hubble parameter are a function of
3-manifold choice among compact FLRW models, then probability spaces
parametrised by Omega do not, in general, give a zero probability of a flat
model. Alternatively, parametrisation by the injectivity radius r_inj ("size")
suggests the Lebesgue measure. In this case, the probability space over the
injectivity radius implies that flat models occur almost surely (a.s.), in the
sense of probability theory, and non-flat models a.s. do not occur.Comment: 19 pages, 4 figures; v2: minor language improvements; v3:
generalisation: m, H functions of
Hepatic progenitor cells from adult human livers for cell transplantation.
Objective: Liver regeneration is mainly based on cellular
self-renewal including progenitor cells. Efforts have been
made to harness this potential for cell transplantation, but
shortage of hepatocytes and premature differentiated
progenitor cells from extra-hepatic organs are limiting
factors. Histological studies implied that resident cells in
adult liver can proliferate, have bipotential character and
may be a suitable source for cell transplantation.
Methods: Particular cell populations were isolated after
adequate tissue dissociation. Single cell suspensions were
purified by Thy-1 positivity selection, characterised in vitro
and transplanted in immunodeficient Pfp/Rag2 mice.
Results: Thy-1+ cells that are mainly found in the portal
tract and the surrounding parenchyma, were isolated from
surgical liver tissue with high yields from specimens with
histological signs of regeneration. Thy-1+ cell populations
were positive for progenitor (CD34, c-kit, CK14, M2PK,
OV6), biliary (CK19) and hepatic (HepPar1) markers
revealing their progenitor as well as hepatic and biliary
nature. The potential of Thy-1+ cells for differentiation in
vitro was demonstrated by increased mRNA and protein
expression for hepatic (CK18, HepPar1) and biliary (CK7)
markers during culture while progenitor markers CK14,
chromogranin A and nestin were reduced. After
transplantation of Thy-1+ cells into livers of immunodeficient
mice, engraftment was predominantly seen in the
periportal portion of the liver lobule. Analysis of in situ
material revealed that transplanted cells express human
hepatic markers HepPar1 and albumin, indicating functional
engraftment.
Conclusion: Bipotential progenitor cells from human
adult livers can be isolated using Thy-1 and might be a
potential candidate for cell treatment in liver diseases
A weak acceleration effect due to residual gravity in a multiply connected universe
Could cosmic topology imply dark energy? We use a weak field (Newtonian)
approximation of gravity and consider the gravitational effect from distant,
multiple copies of a large, collapsed (virialised) object today (i.e. a massive
galaxy cluster), taking into account the finite propagation speed of gravity,
in a flat, multiply connected universe, and assume that due to a prior epoch of
fast expansion (e.g. inflation), the gravitational effect of the distant copies
is felt locally, from beyond the naively calculated horizon. We find that for a
universe with a spatial section, the residual Newtonian gravitational
force (to first order) provides an anisotropic effect that repels test
particles from the cluster in the compact direction, in a way algebraically
similar to that of dark energy. For a typical test object at comoving distance
from the nearest dense nodes of the cosmic web of density perturbations,
the pressure-to-density ratio of the equation of state in an FLRW universe,
is w \sim - (\chi/L)^3, where is the size of the fundamental domain, i.e.
of the universe. Clearly, |w|<<1. For a T^3 spatial section of exactly equal
fundamental lengths, the effect cancels to zero. For a T^3 spatial section of
unequal fundamental lengths, the acceleration effect is anisotropic in the
sense that it will *tend to equalise the three fundamental lengths*. Provided
that at least a modest amount of inflation occurred in the early Universe, and
given some other conditions, multiple connectedness does generate an effect
similar to that of dark energy, but the amplitude of the effect at the present
epoch is too small to explain the observed dark energy density and its
anisotropy makes it an unrealistic candidate for the observed dark energy.Comment: 12 pages, 8 figures, accepted by Astronomy & Astrophysics; v2
includes 3D calculation and result; v3 includes analysis of numerical
simulation, matches accepted versio
- …
