755 research outputs found
Adiabatic response for Lindblad dynamics
We study the adiabatic response of open systems governed by Lindblad
evolutions. In such systems, there is an ambiguity in the assignment of
observables to fluxes (rates) such as velocities and currents. For the
appropriate notion of flux, the formulas for the transport coefficients are
simple and explicit and are governed by the parallel transport on the manifold
of instantaneous stationary states. Among our results we show that the response
coefficients of open systems, whose stationary states are projections, is given
by the adiabatic curvature.Comment: 33 pages, 4 figures, accepted versio
Roughening transition, surface tension and equilibrium droplet shapes in a two-dimensional Ising system
The exact surface tension for all angles and temperatures is given for the two-dimensional square Ising system with anisotropic nearest-neighbour interactions. Using this in the Wulff construction, droplet shapes are computed and illustrated. Letting temperature approach zero allows explicit study of the roughening transition in this model. Results are compared with those of the solid-on-solid approximation
Boundary maps for -crossed products with R with an application to the quantum Hall effect
The boundary map in K-theory arising from the Wiener-Hopf extension of a
crossed product algebra with R is the Connes-Thom isomorphism. In this article
the Wiener Hopf extension is combined with the Heisenberg group algebra to
provide an elementary construction of a corresponding map on higher traces (and
cyclic cohomology). It then follows directly from a non-commutative Stokes
theorem that this map is dual w.r.t.Connes' pairing of cyclic cohomology with
K-theory. As an application, we prove equality of quantized bulk and edge
conductivities for the integer quantum Hall effect described by continuous
magnetic Schroedinger operators.Comment: to appear in Commun. Math. Phy
Time-Energy coherent states and adiabatic scattering
Coherent states in the time-energy plane provide a natural basis to study
adiabatic scattering. We relate the (diagonal) matrix elements of the
scattering matrix in this basis with the frozen on-shell scattering data. We
describe an exactly solvable model, and show that the error in the frozen data
cannot be estimated by the Wigner time delay alone. We introduce the notion of
energy shift, a conjugate of Wigner time delay, and show that for incoming
state the energy shift determines the outgoing state.Comment: 11 pages, 1 figur
On the maximal ionization of atoms in strong magnetic fields
We give upper bounds for the number of spin 1/2 particles that can be bound
to a nucleus of charge Z in the presence of a magnetic field B, including the
spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1
for magnetic fields that go to zero at infinity, ignoring the spin-field
interaction. For particles with fermionic statistics in a homogeneous magnetic
field our upper bound has an additional term of order
.Comment: LaTeX2e, 8 page
Complex Line Bundles over Simplicial Complexes and their Applications
Discrete vector bundles are important in Physics and recently found
remarkable applications in Computer Graphics. This article approaches discrete
bundles from the viewpoint of Discrete Differential Geometry, including a
complete classification of discrete vector bundles over finite simplicial
complexes. In particular, we obtain a discrete analogue of a theorem of Andr\'e
Weil on the classification of hermitian line bundles. Moreover, we associate to
each discrete hermitian line bundle with curvature a unique piecewise-smooth
hermitian line bundle of piecewise constant curvature. This is then used to
define a discrete Dirichlet energy which generalizes the well-known cotangent
Laplace operator to discrete hermitian line bundles over Euclidean simplicial
manifolds of arbitrary dimension
Toward a unified theory of sparse dimensionality reduction in Euclidean space
Let be a sparse Johnson-Lindenstrauss
transform [KN14] with non-zeroes per column. For a subset of the unit
sphere, given, we study settings for required to
ensure i.e. so that preserves the norm of every
simultaneously and multiplicatively up to . We
introduce a new complexity parameter, which depends on the geometry of , and
show that it suffices to choose and such that this parameter is small.
Our result is a sparse analog of Gordon's theorem, which was concerned with a
dense having i.i.d. Gaussian entries. We qualitatively unify several
results related to the Johnson-Lindenstrauss lemma, subspace embeddings, and
Fourier-based restricted isometries. Our work also implies new results in using
the sparse Johnson-Lindenstrauss transform in numerical linear algebra,
classical and model-based compressed sensing, manifold learning, and
constrained least squares problems such as the Lasso
Piezoelectricity: Quantized Charge Transport Driven by Adiabatic Deformations
We study the (zero temperature) quantum piezoelectric response of Harper-like
models with broken inversion symmetry. The charge transport in these models is
related to topological invariants (Chern numbers). We show that there are
arbitrarily small periodic modulations of the atomic positions that lead to
nonzero charge transport for the electrons.Comment: Latex, letter. Replaced version with minor change in style. 1 fi
- …
