27,200 research outputs found
The Top Triangle Moose
We introduce a deconstructed model that incorporates both Higgsless and
top-color mechanisms. The model alleviates the typical tension in Higgsless
models between obtaining the correct top quark mass and keeping delta-rho
small. It does so by singling out the top quark mass generation as arising from
a Yukawa coupling to an effective top-Higgs which develops a small vacuum
expectation value, while electroweak symmetry breaking results largely from a
Higgsless mechanism. As a result, the heavy partners of the SM fermions can be
light enough to be seen at the LHC.Comment: To appear in proceedings of SCGT09, Nagoya, Japan. 5 page
Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors
Nematic order resulting from the partial melting of density-waves has been
proposed as the mechanism to explain nematicity in iron-based superconductors.
An outstanding question, however, is whether the microscopic electronic model
for these systems -- the multi-orbital Hubbard model -- displays such an
ordered state as its leading instability. In contrast to usual electronic
instabilities, such as magnetic and charge order, this fluctuation-driven
phenomenon cannot be captured by the standard RPA method. Here, by including
fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its
nematic susceptibility and contrast it with its ferro-orbital order
susceptibility, showing that its leading instability is the spin-driven nematic
phase. Our results also demonstrate the primary role played by the
orbital in driving the nematic transition, and reveal that high-energy magnetic
fluctuations are essential to stabilize nematic order in the absence of
magnetic order.Comment: 8 pages, 6 figure
Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice
We demonstrate preparation and detection of an atom number distribution in a
one-dimensional atomic lattice with the variance dB below the Poissonian
noise level. A mesoscopic ensemble containing a few thousand atoms is trapped
in the evanescent field of a nanofiber. The atom number is measured through
dual-color homodyne interferometry with a pW-power shot noise limited probe.
Strong coupling of the evanescent probe guided by the nanofiber allows for a
real-time measurement with a precision of atoms on an ensemble of some
atoms in a one-dimensional trap. The method is very well suited for
generating collective atomic entangled or spin-squeezed states via a quantum
non-demolition measurement as well as for tomography of exotic atomic states in
a one-dimensional lattice
Electric Polarizability of Neutral Hadrons from Lattice QCD
By simulating a uniform electric field on a lattice and measuring the change
in the rest mass, we calculate the electric polarizability of neutral mesons
and baryons using the methods of quenched lattice QCD. Specifically, we measure
the electric polarizability coefficient from the quadratic response to the
electric field for 10 particles: the vector mesons and ; the
octet baryons n, , , , and ;
and the decouplet baryons , , and .
Independent calculations using two fermion actions were done for consistency
and comparison purposes. One calculation uses Wilson fermions with a lattice
spacing of fm. The other uses tadpole improved L\"usher-Weiss gauge
fields and clover quark action with a lattice spacing fm. Our results
for neutron electric polarizability are compared to experiment.Comment: 25 pages, 20 figure
Casimir energy density in closed hyperbolic universes
The original Casimir effect results from the difference in the vacuum
energies of the electromagnetic field, between that in a region of space with
boundary conditions and that in the same region without boundary conditions. In
this paper we develop the theory of a similar situation, involving a scalar
field in spacetimes with compact spatial sections of negative spatial
curvature.Comment: 10 pages. Contribution to the "Fifth Alexander Friedmann
International Seminar on Gravitation and Cosmology," Joao Pessoa, Brazil,
2002. Revised version, with altered Abstract and one new referenc
A study of quantum decoherence in a system with Kolmogorov-Arnol'd-Moser tori
We present an experimental and numerical study of the effects of decoherence
on a quantum system whose classical analogue has Kolmogorov-Arnol'd-Moser (KAM)
tori in its phase space. Atoms are prepared in a caesium magneto-optical trap
at temperatures and densities which necessitate a quantum description. This
real quantum system is coupled to the environment via spontaneous emission. The
degree of coupling is varied and the effects of this coupling on the quantum
coherence of the system are studied. When the classical diffusion through a
partially broken torus is < hbar, diffusion of quantum particles is inhibited.
We find that increasing decoherence via spontaneous emission increases the
transport of quantum particles through the boundary.Comment: 19 pages including 6 figure
Non-radial oscillations in M-giant semi-regular variables: Stellar models and Kepler observations
The success of asteroseismology relies heavily on our ability to identify the
frequency patterns of stellar oscillation modes. For stars like the Sun this is
relatively easy because the mode frequencies follow a regular pattern described
by a well-founded asymptotic relation. When a solar like star evolves off the
main sequence and onto the red giant branch its structure changes dramatically
resulting in changes in the frequency pattern of the modes. We follow the
evolution of the adiabatic frequency pattern from the main sequence to near the
tip of the red giant branch for a series of models. We find a significant
departure from the asymptotic relation for the non-radial modes near the red
giant branch tip, resulting in a triplet frequency pattern. To support our
investigation we analyze almost four years of Kepler data of the most luminous
stars in the field (late K and early M type) and find that their frequency
spectra indeed show a triplet pattern dominated by dipole modes even for the
most luminous stars in our sample. Our identification explains previous results
from ground-based observations reporting fine structure in the Petersen diagram
and sub ridges in the period-luminosity diagram. Finally, we find `new ridges'
of non-radial modes with frequencies below the fundamental mode in our model
calculations, and we speculate they are related to f modes.Comment: 8 page, 5 figures, accepted by ApJL (ApJ, 788, L10
Diagnosing people with dementia using automatic conversation analysis
A recent study using Conversation Analysis (CA) has demonstrated that communication problems may be picked up during conversations between patients and neurologists, and that this can be used to differentiate between patients with (progressive neurodegenerative dementia) ND and those with (nonprogressive) functional memory disorders (FMD). This paper presents a novel automatic method for transcribing such conversations and extracting CA-style features. A range of acoustic, syntactic, semantic and visual features were automatically extracted and used to train a set of classifiers. In a proof-of-principle style study, using data recording during real neurologist-patient consultations, we demonstrate that automatically extracting CA-style features gives a classification accuracy of 95%when using verbatim transcripts. Replacing those transcripts with automatic speech recognition transcripts, we obtain a classification accuracy of 79% which improves to 90% when feature selection is applied. This is a first and encouraging step towards replacing inaccurate, potentially stressful cognitive tests with a test based on monitoring conversation capabilities that could be conducted in e.g. the privacy of the patient’s own home
- …
