46,070 research outputs found
Modelling and control of the flame temperature distribution using probability density function shaping
This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained
On Mitigation of Side-Channel Attacks in 3D ICs: Decorrelating Thermal Patterns from Power and Activity
Various side-channel attacks (SCAs) on ICs have been successfully
demonstrated and also mitigated to some degree. In the context of 3D ICs,
however, prior art has mainly focused on efficient implementations of classical
SCA countermeasures. That is, SCAs tailored for up-and-coming 3D ICs have been
overlooked so far. In this paper, we conduct such a novel study and focus on
one of the most accessible and critical side channels: thermal leakage of
activity and power patterns. We address the thermal leakage in 3D ICs early on
during floorplanning, along with tailored extensions for power and thermal
management. Our key idea is to carefully exploit the specifics of material and
structural properties in 3D ICs, thereby decorrelating the thermal behaviour
from underlying power and activity patterns. Most importantly, we discuss
powerful SCAs and demonstrate how our open-source tool helps to mitigate them.Comment: Published in Proc. Design Automation Conference, 201
Efficient Multi-Party Quantum Secret Sharing Schemes
In this work, we generalize the quantum secret sharing scheme of Hillary,
Bu\v{z}ek and Berthiaume[Phys. Rev. A59, 1829(1999)] into arbitrary
multi-parties. Explicit expressions for the shared secret bit is given. It is
shown that in the Hillery-Bu\v{z}ek-Berthiaume quantum secret sharing scheme
the secret information is shared in the parity of binary strings formed by the
measured outcomes of the participants. In addition, we have increased the
efficiency of the quantum secret sharing scheme by generalizing two techniques
from quantum key distribution. The favored-measuring-basis Quantum secret
sharing scheme is developed from the Lo-Chau-Ardehali technique[H. K. Lo, H. F.
Chau and M. Ardehali, quant-ph/0011056] where all the participants choose their
measuring-basis asymmetrically, and the measuring-basis-encrypted Quantum
secret sharing scheme is developed from the Hwang-Koh-Han technique [W. Y.
Hwang, I. G. Koh and Y. D. Han, Phys. Lett. A244, 489 (1998)] where all
participants choose their measuring-basis according to a control key. Both
schemes are asymptotically 100% in efficiency, hence nearly all the GHZ-states
in a quantum secret sharing process are used to generate shared secret
information.Comment: 7 page
Optimal nonlocal multipartite entanglement concentration based on projection measurements
We propose an optimal nonlocal entanglement concentration protocol (ECP) for
multi-photon systems in a partially entangled pure state, resorting to the
projection measurement on an additional photon. One party in quantum
communication first performs a parity-check measurement on her photon in an
N-photon system and an additional photon, and then she projects the additional
photon into an orthogonal Hilbert space for dividing the original -photon
systems into two groups. In the first group, the N parties will obtain a subset
of -photon systems in a maximally entangled state. In the second group, they
will obtain some less-entangled N-photon systems which are the resource for the
entanglement concentration in the next round. By iterating the entanglement
concentration process several times, the present ECP has the maximal success
probability which is just equivalent to the entanglement of the partially
entangled state. That is, this ECP is an optimal one.Comment: 5 pages, 4 figure
Singularity in the boundary resistance between superfluid He and a solid surface
We report new measurements in four cells of the thermal boundary resistance
between copper and He below but near the superfluid-transition
temperature . For fits of to the data yielded ,
whereas a fit to theoretical values based on the renormalization-group theory
yielded . Alternatively, a good fit of the theory to the data could
be obtained if the {\it amplitude} of the prediction was reduced by a factor
close to two. The results raise the question whether the boundary conditions
used in the theory should be modified.Comment: 4 pages, 4 figures, revte
Topological Insulators with Inversion Symmetry
Topological insulators are materials with a bulk excitation gap generated by
the spin orbit interaction, and which are different from conventional
insulators. This distinction is characterized by Z_2 topological invariants,
which characterize the groundstate. In two dimensions there is a single Z_2
invariant which distinguishes the ordinary insulator from the quantum spin Hall
phase. In three dimensions there are four Z_2 invariants, which distinguish the
ordinary insulator from "weak" and "strong" topological insulators. These
phases are characterized by the presence of gapless surface (or edge) states.
In the 2D quantum spin Hall phase and the 3D strong topological insulator these
states are robust and are insensitive to weak disorder and interactions. In
this paper we show that the presence of inversion symmetry greatly simplifies
the problem of evaluating the Z_2 invariants. We show that the invariants can
be determined from the knowledge of the parity of the occupied Bloch
wavefunctions at the time reversal invariant points in the Brillouin zone.
Using this approach, we predict a number of specific materials are strong
topological insulators, including the semiconducting alloy Bi_{1-x} Sb_x as
well as \alpha-Sn and HgTe under uniaxial strain. This paper also includes an
expanded discussion of our formulation of the topological insulators in both
two and three dimensions, as well as implications for experiments.Comment: 16 pages, 7 figures; published versio
Efficient multipartite entanglement purification with the entanglement link from a subspace
We present an efficient multipartite entanglement purification protocol
(MEPP) for N-photon systems in a Greenberger-Horne-Zeilinger state with
parity-check detectors. It contains two parts. One is the conventional MEPP
with which the parties can obtain a high-fidelity N-photon ensemble directly,
similar to the MEPP with controlled-not gates. The other is our recycling MEPP
in which the entanglement link is used to produce some -photon entangled
systems from entangled N'-photon subsystems (2 \leq N'<N) coming from the
instances which are just discarded in all existing conventional MEPPs. The
entangled N'-photon subsystems are obtained efficiently by measuring the
photons with potential bit-flip errors. With these two parts, the present MEPP
has a higher efficiency than all other conventional MEPPs.Comment: 17 pages, 9 figures, 2 tables. We correct the error in the address of
the author in the published version (Phys. Rev. A 84, 052312 (2011)
Impaired musculoskeletal response to age and exercise in PPARβ(-/-) diabetic mice.
Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances
- …
