11,292 research outputs found
Exact valence bond entanglement entropy and probability distribution in the XXX spin chain and the Potts model
By relating the ground state of Temperley-Lieb hamiltonians to partition
functions of 2D statistical mechanics systems on a half plane, and using a
boundary Coulomb gas formalism, we obtain in closed form the valence bond
entanglement entropy as well as the valence bond probability distribution in
these ground states. We find in particular that for the XXX spin chain, the
number N_c of valence bonds connecting a subsystem of size L to the outside
goes, in the thermodynamic limit, as = (4/pi^2) ln L, disproving a recent
conjecture that this should be related with the von Neumann entropy, and thus
equal to 1/(3 ln 2) ln L. Our results generalize to the Q-state Potts model.Comment: 4 pages, 2 figure
Dense loops, supersymmetry, and Goldstone phases in two dimensions
Loop models in two dimensions can be related to O(N) models. The
low-temperature dense-loops phase of such a model, or of its reformulation
using a supergroup as symmetry, can have a Goldstone broken-symmetry phase for
N<2. We argue that this phase is generic for -2< N <2 when crossings of loops
are allowed, and distinct from the model of non-crossing dense loops first
studied by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. Our arguments are
supported by our numerical results, and by a lattice model solved exactly by
Martins et al. [Phys. Rev. Lett. 81, 504 (1998)].Comment: RevTeX, 5 pages, 3 postscript figure
The packing of two species of polygons on the square lattice
We decorate the square lattice with two species of polygons under the
constraint that every lattice edge is covered by only one polygon and every
vertex is visited by both types of polygons. We end up with a 24 vertex model
which is known in the literature as the fully packed double loop model. In the
particular case in which the fugacities of the polygons are the same, the model
admits an exact solution. The solution is obtained using coordinate Bethe
ansatz and provides a closed expression for the free energy. In particular we
find the free energy of the four colorings model and the double Hamiltonian
walk and recover the known entropy of the Ice model. When both fugacities are
set equal to two the model undergoes an infinite order phase transition.Comment: 21 pages, 4 figure
A real-space grid implementation of the Projector Augmented Wave method
A grid-based real-space implementation of the Projector Augmented Wave (PAW)
method of P. E. Blochl [Phys. Rev. B 50, 17953 (1994)] for Density Functional
Theory (DFT) calculations is presented. The use of uniform 3D real-space grids
for representing wave functions, densities and potentials allows for flexible
boundary conditions, efficient multigrid algorithms for solving Poisson and
Kohn-Sham equations, and efficient parallelization using simple real-space
domain-decomposition. We use the PAW method to perform all-electron
calculations in the frozen core approximation, with smooth valence wave
functions that can be represented on relatively coarse grids. We demonstrate
the accuracy of the method by calculating the atomization energies of twenty
small molecules, and the bulk modulus and lattice constants of bulk aluminum.
We show that the approach in terms of computational efficiency is comparable to
standard plane-wave methods, but the memory requirements are higher.Comment: 13 pages, 3 figures, accepted for publication in Physical Review
Finite average lengths in critical loop models
A relation between the average length of loops and their free energy is
obtained for a variety of O(n)-type models on two-dimensional lattices, by
extending to finite temperatures a calculation due to Kast. We show that the
(number) averaged loop length L stays finite for all non-zero fugacities n, and
in particular it does not diverge upon entering the critical regime n -> 2+.
Fully packed loop (FPL) models with n=2 seem to obey the simple relation L = 3
L_min, where L_min is the smallest loop length allowed by the underlying
lattice. We demonstrate this analytically for the FPL model on the honeycomb
lattice and for the 4-state Potts model on the square lattice, and based on
numerical estimates obtained from a transfer matrix method we conjecture that
this is also true for the two-flavour FPL model on the square lattice. We
present in addition numerical results for the average loop length on the three
critical branches (compact, dense and dilute) of the O(n) model on the
honeycomb lattice, and discuss the limit n -> 0. Contact is made with the
predictions for the distribution of loop lengths obtained by conformal
invariance methods.Comment: 20 pages of LaTeX including 3 figure
On the universality of compact polymers
Fully packed loop models on the square and the honeycomb lattice constitute
new classes of critical behaviour, distinct from those of the low-temperature
O(n) model. A simple symmetry argument suggests that such compact phases are
only possible when the underlying lattice is bipartite. Motivated by the hope
of identifying further compact universality classes we therefore study the
fully packed loop model on the square-octagon lattice. Surprisingly, this model
is only critical for loop weights n < 1.88, and its scaling limit coincides
with the dense phase of the O(n) model. For n=2 it is exactly equivalent to the
selfdual 9-state Potts model. These analytical predictions are confirmed by
numerical transfer matrix results. Our conclusions extend to a large class of
bipartite decorated lattices.Comment: 13 pages including 4 figure
Tetromino tilings and the Tutte polynomial
We consider tiling rectangles of size 4m x 4n by T-shaped tetrominoes. Each
tile is assigned a weight that depends on its orientation and position on the
lattice. For a particular choice of the weights, the generating function of
tilings is shown to be the evaluation of the multivariate Tutte polynomial
Z\_G(Q,v) (known also to physicists as the partition function of the Q-state
Potts model) on an (m-1) x (n-1) rectangle G, where the parameter Q and the
edge weights v can take arbitrary values depending on the tile weights.Comment: 8 pages, 6 figure
Sound velocity and absorption measurements under high pressure using picosecond ultrasonics in diamond anvil cell. Application to the stability study of AlPdMn
We report an innovative high pressure method combining the diamond anvil cell
device with the technique of picosecond ultrasonics. Such an approach allows to
accurately measure sound velocity and attenuation of solids and liquids under
pressure of tens of GPa, overcoming all the drawbacks of traditional
techniques. The power of this new experimental technique is demonstrated in
studies of lattice dynamics, stability domain and relaxation process in a
metallic sample, a perfect single-grain AlPdMn quasicrystal, and rare gas, neon
and argon. Application to the study of defect-induced lattice stability in
AlPdMn up to 30 GPa is proposed. The present work has potential for application
in areas ranging from fundamental problems in physics of solid and liquid
state, which in turn could be beneficial for various other scientific fields as
Earth and planetary science or material research
Loop Model with Generalized Fugacity in Three Dimensions
A statistical model of loops on the three-dimensional lattice is proposed and
is investigated. It is O(n)-type but has loop fugacity that depends on global
three-dimensional shapes of loops in a particular fashion. It is shown that,
despite this non-locality and the dimensionality, a layer-to-layer transfer
matrix can be constructed as a product of local vertex weights for infinitely
many points in the parameter space. Using this transfer matrix, the site
entropy is estimated numerically in the fully packed limit.Comment: 16pages, 4 eps figures, (v2) typos and Table 3 corrected. Refs added,
(v3) an error in an explanation of fig.2 corrected. Refs added. (v4) Changes
in the presentatio
- …
