31,832 research outputs found

    The Degasperis-Procesi equation with self-consistent sources

    Full text link
    The Degasperis-Procesi equation with self-consistent sources(DPESCS) is derived. The Lax representation and the conservation laws for DPESCS are constructed. The peakon solution of DPESCS is obtained.Comment: 15 page

    Entanglement and spin squeezing properties for three bosons in two modes

    Full text link
    We discuss the canonical form for a pure state of three identical bosons in two modes, and classify its entanglement correlation into two types, the analogous GHZ and the W types as well known in a system of three distinguishable qubits. We have performed a detailed study of two important entanglement measures for such a system, the concurrence C\mathcal{C} and the triple entanglement measure τ\tau. We have also calculated explicitly the spin squeezing parameter ξ\xi and the result shows that the W state is the most ``anti-squeezing'' state, for which the spin squeezing parameter cannot be regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P

    Statistical Topography of Glassy Interfaces

    Get PDF
    Statistical topography of two-dimensional interfaces in the presence of quenched disorder is studied utilizing combinatorial optimization algorithms. Finite-size scaling is used to measure geometrical exponents associated with contour loops and fully packed loops. We find that contour-loop exponents depend on the type of disorder (periodic ``vs'' non-periodic) and they satisfy scaling relations characteristic of self-affine rough surfaces. Fully packed loops on the other hand are unaffected by disorder with geometrical exponents that take on their pure values.Comment: 4 pages, REVTEX, 4 figures included. Further information can be obtained from [email protected]

    B\"{a}cklund transformations for high-order constrained flows of the AKNS hierarchy: canonicity and spectrality property

    Full text link
    New infinite number of one- and two-point B\"{a}cklund transformations (BTs) with explicit expressions are constructed for the high-order constrained flows of the AKNS hierarchy. It is shown that these BTs are canonical transformations including B\"{a}cklund parameter η\eta and a spectrality property holds with respect to η\eta and the 'conjugated' variable μ\mu for which the point (η,μ)(\eta, \mu) belongs to the spectral curve. Also the formulas of m-times repeated Darboux transformations for the high-order constrained flows of the AKNS hierarchy are presented.Comment: 21 pages, Latex, to be published in J. Phys.

    Compact and High Performance Dual-band Bandpass Filter Using Resonator-embedded Scheme for WLANs

    Get PDF
    A compact microstrip dual-band bandpass filter (DBBPF) with high selectivity and good suppression for wireless local area networks (WLANs) is proposed utilizing a novel embedded scheme resonator. Two passbands are produced by a pair of embedded half-wavelength meandered stepped-impedance resonator (MSIR) and a quadwavelength short stub loaded stepped-impedance resonator (SIR) separately. The resonator is fed by folded Tshaped capacitive source-load coupling microstrip feed line, and four transmission zeros are obtained at both sides of the bands to improve selectivity and suppression. Simultaneously, the size of the filter is extermely compact because embedding half-wavelength MSIR only changes the interior configuration of quad-wavelength SIR. To validate the design method, the designed filter is fabricated and measured. Both simulated and measured results indicate that good transmission property has been achieved

    Two-Loop Four-Gluon Amplitudes with the Numerical Unitarity Method

    Full text link
    We present the first numerical computation of two-loop amplitudes based on the unitarity method. As a proof of principle, we compute the four-gluon process. We discuss the new method, analyze its numerical properties and apply it to reconstruct the analytic form of the amplitudes. The numerical method is universal, and can be automated to provide multi-scale two-loop computations for phenomenologically relevant signatures at hadron colliders.Comment: 6 pages, 3 figures, Mathematica files for reconstructed analytic formula

    Green's function approach to the magnetic properties of the kagome antiferromagnet

    Full text link
    The S=1/2S=1/2 Heisenberg antiferromagnet is studied on the kagom\'e lattice by using a Green's function method based on an appropriate decoupling of the equations of motion. Thermodynamic properties as well as spin-spin correlation functions are obtained and characterize this system as a two-dimensional quantum spin liquid. Spin-spin correlation functions decay exponentially with distance down to low temperature and the calculated missing entropy at T=0 is found to be 0.46ln20.46\ln{2}. Within the present scheme, the specific heat exhibits a single peak structure and a T2T^2 dependence at low temperature.Comment: 6 (two-column revtex4) pages, 5 ps figures. Submitted to Phys. Rev.

    Possible high temperature superconductivity in Ti-doped A-Sc-Fe-As-O (A= Ca, Sr) system

    Full text link
    We report a systematic study on the effect of partial substitution of Sc3+^{3+} by Ti4+^{4+} in Sr2_{2}ScFeAsO3_{3}, Ca2_{2}ScFeAsO3_{3} and Sr3_{3}Sc2_{2}Fe2_{2}As2_{2}O5_{5} on their electrical properties. High level of doping results in an increased carrier concentration and leads to the appearance of superconductivity with the onset of Tc_{c} up to 45 K.Comment: 8 pages, 4 figures, 2 new figure
    corecore