31,832 research outputs found
The Degasperis-Procesi equation with self-consistent sources
The Degasperis-Procesi equation with self-consistent sources(DPESCS) is
derived. The Lax representation and the conservation laws for DPESCS are
constructed. The peakon solution of DPESCS is obtained.Comment: 15 page
Entanglement and spin squeezing properties for three bosons in two modes
We discuss the canonical form for a pure state of three identical bosons in
two modes, and classify its entanglement correlation into two types, the
analogous GHZ and the W types as well known in a system of three
distinguishable qubits. We have performed a detailed study of two important
entanglement measures for such a system, the concurrence and the
triple entanglement measure . We have also calculated explicitly the spin
squeezing parameter and the result shows that the W state is the most
``anti-squeezing'' state, for which the spin squeezing parameter cannot be
regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P
Statistical Topography of Glassy Interfaces
Statistical topography of two-dimensional interfaces in the presence of
quenched disorder is studied utilizing combinatorial optimization algorithms.
Finite-size scaling is used to measure geometrical exponents associated with
contour loops and fully packed loops. We find that contour-loop exponents
depend on the type of disorder (periodic ``vs'' non-periodic) and they satisfy
scaling relations characteristic of self-affine rough surfaces. Fully packed
loops on the other hand are unaffected by disorder with geometrical exponents
that take on their pure values.Comment: 4 pages, REVTEX, 4 figures included. Further information can be
obtained from [email protected]
B\"{a}cklund transformations for high-order constrained flows of the AKNS hierarchy: canonicity and spectrality property
New infinite number of one- and two-point B\"{a}cklund transformations (BTs)
with explicit expressions are constructed for the high-order constrained flows
of the AKNS hierarchy. It is shown that these BTs are canonical transformations
including B\"{a}cklund parameter and a spectrality property holds with
respect to and the 'conjugated' variable for which the point
belongs to the spectral curve. Also the formulas of m-times
repeated Darboux transformations for the high-order constrained flows of the
AKNS hierarchy are presented.Comment: 21 pages, Latex, to be published in J. Phys.
Compact and High Performance Dual-band Bandpass Filter Using Resonator-embedded Scheme for WLANs
A compact microstrip dual-band bandpass filter (DBBPF) with high selectivity and good suppression for wireless local area networks (WLANs) is proposed utilizing a novel embedded scheme resonator. Two passbands are produced by a pair of embedded half-wavelength meandered stepped-impedance resonator (MSIR) and a quadwavelength short stub loaded stepped-impedance resonator (SIR) separately. The resonator is fed by folded Tshaped capacitive source-load coupling microstrip feed line, and four transmission zeros are obtained at both sides of the bands to improve selectivity and suppression. Simultaneously, the size of the filter is extermely compact because embedding half-wavelength MSIR only changes the interior configuration of quad-wavelength SIR. To validate the design method, the designed filter is fabricated and measured. Both simulated and measured results indicate that good transmission property has been achieved
Two-Loop Four-Gluon Amplitudes with the Numerical Unitarity Method
We present the first numerical computation of two-loop amplitudes based on
the unitarity method. As a proof of principle, we compute the four-gluon
process. We discuss the new method, analyze its numerical properties and apply
it to reconstruct the analytic form of the amplitudes. The numerical method is
universal, and can be automated to provide multi-scale two-loop computations
for phenomenologically relevant signatures at hadron colliders.Comment: 6 pages, 3 figures, Mathematica files for reconstructed analytic
formula
Green's function approach to the magnetic properties of the kagome antiferromagnet
The Heisenberg antiferromagnet is studied on the kagom\'e lattice by
using a Green's function method based on an appropriate decoupling of the
equations of motion. Thermodynamic properties as well as spin-spin correlation
functions are obtained and characterize this system as a two-dimensional
quantum spin liquid. Spin-spin correlation functions decay exponentially with
distance down to low temperature and the calculated missing entropy at T=0 is
found to be . Within the present scheme, the specific heat exhibits
a single peak structure and a dependence at low temperature.Comment: 6 (two-column revtex4) pages, 5 ps figures. Submitted to Phys. Rev.
Possible high temperature superconductivity in Ti-doped A-Sc-Fe-As-O (A= Ca, Sr) system
We report a systematic study on the effect of partial substitution of
Sc by Ti in SrScFeAsO, CaScFeAsO and
SrScFeAsO on their electrical properties. High
level of doping results in an increased carrier concentration and leads to the
appearance of superconductivity with the onset of T up to 45 K.Comment: 8 pages, 4 figures, 2 new figure
- …
