48 research outputs found
Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies
To investigate the accretion and feedback processes in massive star
formation, we analyze the shapes of emission lines from hot molecular cores,
whose asymmetries trace infall and expansion motions. The high-mass star
forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in
various lines of HCN and its isotopologues, complemented by APEX data. The
observations are compared to spherically symmetric, centrally heated models
with density power-law gradient and different velocity fields (infall or
infall+expansion), using the radiative transfer code RATRAN. The HCN line
profiles are asymmetric, with the emission peak shifting from blue to red with
increasing J and decreasing line opacity (HCN to HCN). This is most
evident in the HCN 12--11 line at 1062 GHz. These line shapes are reproduced by
a model whose velocity field changes from infall in the outer part to expansion
in the inner part. The qualitative reproduction of the HCN lines suggests that
infall dominates in the colder, outer regions, but expansion dominates in the
warmer, inner regions. We are thus witnessing the onset of feedback in massive
star formation, starting to reverse the infall and finally disrupting the whole
molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI
were critically important.Comment: A&A, HIFI special issue, accepte
Herschel observations of extra-ordinary sources: Detecting spiral arm clouds by CH absorption lines
We have observed CH absorption lines ()
against the continuum source Sgr~B2(M) using the \textit{Herschel}/HIFI
instrument. With the high spectral resolution and wide velocity coverage
provided by HIFI, 31 CH absorption features with different radial velocities
and line widths are detected and identified. The narrower line width and lower
column density clouds show `spiral arm' cloud characteristics, while the
absorption component with the broadest line width and highest column density
corresponds to the gas from the Sgr~B2 envelope. The observations show that
each `spiral arm' harbors multiple velocity components, indicating that the
clouds are not uniform and that they have internal structure. This
line-of-sight through almost the entire Galaxy offers unique possibilities to
study the basic chemistry of simple molecules in diffuse clouds, as a variety
of different cloud classes are sampled simultaneously. We find that the linear
relationship between CH and H column densities found at lower by UV
observations does not continue into the range of higher visual extinction.
There, the curve flattens, which probably means that CH is depleted in the
denser cores of these clouds.Comment: Accepted for publication in A&A, HIFI Special Issu
Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies
Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular
cores, whose asymmetries trace infall and expansion motions.
Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and
its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density
power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN.
Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity
(HCN to H13CN). This is most evident in the HCN 12–11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field
changes from infall in the outer part to expansion in the inner part.
Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates
in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally
disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important
Herschel observations of EXtra-Ordinary Sources (HEXOS): detecting spiral arm clouds by CH absorption lines
We have observed CH absorption lines (J = 3/2, N = 1 ← J = 1/2, N = 1) against the continuum source Sgr B2(M) using the Herschel/HIFI
instrument. With the high spectral resolution and wide velocity coverage provided by HIFI, 31 CH absorption features with different radial velocities
and line widths are detected and identified. The narrower line width and lower column density clouds show “spiral arm” cloud characteristics,
while the absorption component with the broadest line width and highest column density corresponds to the gas from the Sgr B2 envelope. The
observations show that each “spiral arm” harbors multiple velocity components, indicating that the clouds are not uniform and that they have internal
structure. This line-of-sight through almost the entire Galaxy offers unique possibilities to study the basic chemistry of simple molecules in
diffuse clouds, as a variety of different cloud classes are sampled simultaneously. We find that the linear relationship between CH and H2 column
densities found at lower AV by UV observations does not continue into the range of higher visual extinction. There, the curve flattens, which
probably means that CH is depleted in the denser cores of these clouds
