40,905 research outputs found
Resolution of the strong CP and U(1) problems
Definition of the determinant of Euclidean Dirac operator in the nontrivial
sector of gauge fields suffers from an inherent ambiguity. The popular
Osterwalder-Schrader (OS) recipe for the conjugate Dirac field leads to the
option of a vanishing determinant. We propose a novel representation for the
conjugate field which depends linearly on the Dirac field and yields a
nonvanishing determinant in the nontrivial sector. Physics, it appears, chooses
this second option becuase the novel representation leads to a satisfactory
resolution of two outstanding problems, the strong CP and U(1) problems,
attributed to instanton effects.Comment: Latex file, 9 pages, no figur
A Canonical Approach to the Quantization of the Damped Harmonic Oscillator
We provide a new canonical approach for studying the quantum mechanical
damped harmonic oscillator based on the doubling of degrees of freedom
approach. Explicit expressions for Lagrangians of the elementary modes of the
problem, characterising both forward and backward time propagations are given.
A Hamiltonian analysis, showing the equivalence with the Lagrangian approach,
is also done. Based on this Hamiltonian analysis, the quantization of the model
is discussed.Comment: Revtex, 6 pages, considerably expanded with modified title and refs.;
To appear in J.Phys.
T invariance of Higgs interactions in the standard model
In the standard model, the Cabibbo-Kobayashi-Maskawa matrix, which
incorporates the time-reversal violation shown by the charged current weak
interactions, originates from the Higgs-quark interactions. The Yukawa
interactions of quarks with the physical Higgs particle can contain further
complex phase factors, but nevertheless conserve T, as shown by constructing
the fermion T transformation and the invariant euclidean fermion measure.Comment: LaTeX, 4 pages; presented at PASCOS'0
Artificial Life in an Exciton-Polariton Lattice
We show theoretically that a lattice of exciton-polaritons can behave as a
life-like cellular automaton when simultaneously excited by a continuous wave
coherent field and a time-periodic sequence of non-resonant pulses. This
provides a mechanism of realizing a range of highly sought spatiotemporal
structures under the same conditions, including: discrete solitons, oscillating
solitons, rotating solitons, breathers, soliton trains, guns, and choatic
behaviour. These structures can survive in the system indefinitely, despite the
presence of dissipation, and allow universal computation.Comment: 14 pages, 14 figure
Canonical Quantization of the Self-Dual Model coupled to Fermions
This paper is dedicated to formulate the interaction picture dynamics of the
self-dual field minimally coupled to fermions. To make this possible, we start
by quantizing the free self-dual model by means of the Dirac bracket
quantization procedure. We obtain, as result, that the free self-dual model is
a relativistically invariant quantum field theory whose excitations are
identical to the physical (gauge invariant) excitations of the free
Maxwell-Chern-Simons theory. The model describing the interaction of the
self-dual field minimally coupled to fermions is also quantized through the
Dirac bracket quantization procedure. One of the self-dual field components is
found not to commute, at equal times, with the fermionic fields. Hence, the
formulation of the interaction picture dynamics is only possible after the
elimination of the just mentioned component. This procedure brings, in turns,
two new interaction terms, which are local in space and time while
non-renormalizable by power counting. Relativistic invariance is tested in
connection with the elastic fermion-fermion scattering amplitude. We prove that
all the non-covariant pieces in the interaction Hamiltonian are equivalent to
the covariant minimal interaction of the self-dual field with the fermions. The
high energy behavior of the self-dual field propagator corroborates that the
coupled theory is non-renormalizable. Certainly, the self-dual field minimally
coupled to fermions bears no resemblance with the renormalizable model defined
by the Maxwell-Chern-Simons field minimally coupled to fermions.Comment: 16 pages, no special macros, no corrections in the pape
Study of solid laser materials Final report
Eigenvalues for electron configurations of rare earth ions in yttrium-aluminum garnet by optically pumped laser
- …
