1,255 research outputs found

    Acoustic horizons for axially and spherically symmetric fluid flow

    Full text link
    We investigate the formation of acoustic horizons for an inviscid fluid moving in a pipe in the case of stationary and axi-symmetric flow. We show that, differently from what is generally believed, the acoustic horizon forms in correspondence of either a local minimum or maximum of the flux tube cross-section. Similarly, the external potential is required to have either a maximum or a minimum at the horizon, so that the external force has to vanish there. Choosing a power-law equation of state for the fluid, PρnP\propto \rho^{n}, we solve the equations of the fluid dynamics and show that the two possibilities are realized respectively for n>1n>-1 and n<1n<-1. These results are extended also to the case of spherically symmetric flow.Comment: 6 pages, 3 figure

    And what if gravity is intrinsically quantic ?

    Full text link
    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, sting theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and former a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics and gravity. Without gravity quantum mechanics becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum universe, and present a preliminary formulation for gravity in a system with a finite number of particles.Comment: 8 pages, 1 figure. To appear in the proceedings of the DICE2008 conference, Castiglioncello, Tuscany, Italy, 22-26 Sep. 2008. V2: some typos remove

    Ghost Condensate Busting

    Full text link
    Applying the Thomas-Fermi approximation to renormalizable field theories, we construct ghost condensation models that are free of the instabilities associated with violations of the null-energy condition.Comment: 9 pages, minor corrections, a reference added, the discussion on consistency of the Thomas-Fermi approximation expanded, to appear in JCA

    Classical Scalar Fields and the Generalized Second Law

    Full text link
    It has been shown that classical non-minimally coupled scalar fields can violate all of the standard energy conditions in general relativity. Violations of the null and averaged null energy conditions obtainable with such fields have been suggested as possible exotic matter candidates required for the maintenance of traversable wormholes. In this paper, we explore the possibility that if such fields exist, they might be used to produce large negative energy fluxes and macroscopic violations of the generalized second law (GSL) of thermodynamics. We find that it appears to be very easy to produce large magnitude negative energy fluxes in flat spacetime. However we also find, somewhat surprisingly, that these same types of fluxes injected into a black hole do {\it not} produce violations of the GSL. This is true even in cases where the flux results in a decrease in the area of the horizon. We demonstrate that two effects are responsible for the rescue of the GSL: the acausal behavior of the horizon and the modification of the usual black hole entropy formula by an additional term which depends on the scalar field.Comment: 25 pages, 2 figures; paper substantially rewritten, major changes in the conclusion

    Effective Hamiltonian for non-minimally coupled scalar fields

    Get PDF
    Performing a relativistic approximation as the generalization to a curved spacetime of the flat space Klein-Gordon equation, an effective Hamiltonian which includes non-minimial coupling between gravity and scalar field and also quartic self-interaction of scalar field term is obtained.Comment: 4 page

    Wireless multimedia sensor network for plant disease detections

    Get PDF
    International audienceTo minimize pesticide use it is necessary to detect at the early stage the present of plant disease and perform local treatment instead of global systematic treatment. To achieve this goal, one of the techniques may be used is image processing through the deployment of WMSN in the cultivated field. However, transmitting massive image data wirelessly will increase significantly network traffic and particularly energy consumption. In this paper, we propose a plant disease detection approach which is designed to run on the resource-constrained WMSN nodes. Through the analysis of plant images acquired by the node, this new approach is able to make a preliminary local decision on the health condition of the plant and determine the necessity of sending back images to the control centre for further inspection, thus improving the efficiency of the monitoring network. The complete method includes image segmentation based on both color and shape, and uses 2D histogram as the feature for classification. Experiments on the plant images with nutrient deficiency symptoms show the classification accuracy of the new method reaches 87.5%

    Genetic study of congenital bile-duct dilatation identifies de novo and inherited variants in functionally related genes

    Get PDF
    Background: Congenital dilatation of the bile-duct (CDD) is a rare, mostly sporadic, disorder that results in bile retention with severe associated complications. CDD affects mainly Asians. To our knowledge, no genetic study has ever been conducted. Methods: We aim to identify genetic risk factors by a “trio-based” exome-sequencing approach, whereby 31 CDD probands and their unaffected parents were exome-sequenced. Seven-hundred controls from the local population were used to detect gene-sets significantly enriched with rare variants in CDD patients. Results: Twenty-one predicted damaging de novo variants (DNVs; 4 protein truncating and 17 missense) were identified in several evolutionarily constrained genes (p &#60; 0.01). Six genes carrying DNVs were associated with human developmental disorders involving epithelial, connective or bone morphologies (PXDN, RTEL1, ANKRD11, MAP2K1, CYLD, ACAN) and four linked with cholangio- and hepatocellular carcinomas (PIK3CA, TLN1 CYLD, MAP2K1). Importantly, CDD patients have an excess of DNVs in cancer-related genes (p &#60; 0.025). Thirteen genes were recurrently mutated at different sites, forming compound heterozygotes or functionally related complexes within patients. Conclusions: Our data supports a strong genetic basis for CDD and show that CDD is not only genetically heterogeneous but also non-monogenic, requiring mutations in more than one genes for the disease to develop. The data is consistent with the rarity and sporadic presentation of CDD

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Query rewriting under linear EL knowledge bases

    Get PDF
    With the adoption of the recent SPARQL 1.1 standard, RDF databases are capable of directly answering more expressive queries than simple conjunctive queries. In this paper we exploit such capabilities to answer conjunctive queries (CQs) under ontologies expressed in the description logic called linear EL-lin, a restricted form of EL. In particular, we show a query answering algorithm that rewrites a given CQ into a conjunctive regular path query (CRPQ) which, evaluated on the given instance, returns the correct answer. Our technique is based on the representation of infinite unions of CQs by non-deterministic finite-state automata. Our results achieve optimal data complexity, as well as producing rewritings straightforwardly implementable in SPARQL 1.1
    corecore