2,410 research outputs found

    The Structure of Multiloop Amplitudes in Gauge and Gravity Theories

    Full text link
    We review the recently discovered duality between color and kinematics in gauge theories. This duality leads to a remarkably simple double-copy relation between diagrammatic numerators of gravity scattering amplitudes and gauge-theory ones. We summarize nontrivial evidence that the duality and double-copy property holds to all loop orders. We also comment on other developments, including a proof that the gauge-theory duality leads to the gravity double-copy property, and the identification of gauge-theory Lagrangians whose double copies yield gravity Lagrangians.Comment: To appear in Proceedings of Loops and Legs in Quantum Field Theory, Woerlitz, Germany, April 25-30, 2010; 4 figure

    On the Coupling of Gravitons to Matter

    Full text link
    Using relationships between open and closed strings, we present a construction of tree-level scattering amplitudes for gravitons minimally coupled to matter in terms of gauge theory partial amplitudes. In particular, we present examples of amplitudes with gravitons coupled to vectors or to a single fermion pair. We also present two examples with massive graviton exchange, as would arise in the presence of large compact dimensions. The gauge charges are represented by flavors of dynamical scalars or fermions. This also leads to an unconventional decomposition of color and kinematics in gauge theories.Comment: RevTex, 4 page

    Regression Depth and Center Points

    Get PDF
    We show that, for any set of n points in d dimensions, there exists a hyperplane with regression depth at least ceiling(n/(d+1)). as had been conjectured by Rousseeuw and Hubert. Dually, for any arrangement of n hyperplanes in d dimensions there exists a point that cannot escape to infinity without crossing at least ceiling(n/(d+1)) hyperplanes. We also apply our approach to related questions on the existence of partitions of the data into subsets such that a common plane has nonzero regression depth in each subset, and to the computational complexity of regression depth problems.Comment: 14 pages, 3 figure

    From lightcone actions to maximally supersymmetric amplitudes

    Full text link
    In this article actions for N=4 SYM and N=8 supergravity are formulated in terms of a chiral superfield, which contains only the physical degrees of freedom of either theory. In these new actions, which originate from the lightcone superspace, the supergravity cubic vertex is the square of the gauge theory one (omitting the color structures). Amplitude calculations using the corresponding Feynman supergraph rules are tedious, but can be simplified by choosing a preferred superframe. Recursive calculations of all MHV amplitudes in N=4 SYM and the four-point N=8 supergravity amplitude are shown to agree with the known results and connections to the BCFW recursion relations are pointed out. Finally, the new path integrals are discussed in the context of the double-copy property relating N=4 SYM theory to N=8 supergravity.Comment: 29 pages, 2 figures, v2: title modified, published versio

    Dual conformal constraints and infrared equations from global residue theorems in N=4 SYM theory

    Get PDF
    Infrared equations and dual conformal constraints arise as consistency conditions on loop amplitudes in N=4 super Yang-Mills theory. These conditions are linear relations between leading singularities, which can be computed in the Grassmannian formulation of N=4 super Yang-Mills theory proposed recently. Examples for infrared equations have been shown to be implied by global residue theorems in the Grassmannian picture. Both dual conformal constraints and infrared equations are mapped explicitly to global residue theorems for one-loop next-to-maximally-helicity-violating amplitudes. In addition, the identity relating the BCFW and its parity-conjugated form of tree-level amplitudes, is shown to emerge from a particular combination of global residue theorems.Comment: 21 page

    The Five-Loop Four-Point Amplitude of N=4 super-Yang-Mills Theory

    Full text link
    Using the method of maximal cuts, we construct the complete D-dimensional integrand of the five-loop four-point amplitude of N = 4 super-Yang-Mills theory, including nonplanar contributions. In the critical dimension where this amplitude becomes ultraviolet divergent, we present a compact explicit expression for the nonvanishing ultraviolet divergence in terms of three vacuum integrals. This construction provides a crucial step towards obtaining the corresponding amplitude of N = 8 supergravity useful for resolving the general ultraviolet behavior of supergravity theories.Comment: 5 pages, 4 figures, RevTex. Ancillary file included. v2 minor corrections, corrected references and overall phase in eq. (5), matching journal versio

    Three-Loop Superfiniteness of N=8 Supergravity

    Get PDF
    We construct the three-loop four-point amplitude of N=8 supergravity using the unitarity method. The amplitude is ultraviolet finite in four dimensions. Novel cancellations, not predicted by traditional superspace power-counting arguments, render its degree of divergence in D dimensions to be no worse than that of N=4 super-Yang-Mills theory -- a finite theory in four dimensions. Similar cancellations can be identified at all loop orders in certain unitarity cuts, suggesting that N=8 supergravity may be a perturbatively finite theory of quantum gravity.Comment: 5 pages, 4 figures. In v2 references and minor clarifications adde

    The Complete KLT-Map Between Gravity and Gauge Theories

    Full text link
    We present the complete map of any pair of super Yang-Mills theories to supergravity theories as dictated by the KLT relations in four dimensions. Symmetries and the full set of associated vanishing identities are derived. A graphical method is introduced which simplifies counting of states, and helps in identifying the relevant set of symmetries.Comment: 41 pages, 16 figures, published version, typos corrected, references adde

    On factorizations in perturbative quantum gravity

    Full text link
    Some features of Einstein gravity are most easily understood from string theory but are not manifest at the level of the usual Lagrangian formulation. One example is the factorization of gravity amplitudes into gauge theory amplitudes. Based on the recently constructed `double field theory' and a geometrical frame-like formalism developed by Siegel, we provide a framework of perturbative Einstein gravity coupled to a 2-form and a dilaton in which, as a consequence of T-duality, the Feynman rules factorize to all orders in perturbation theory. We thereby establish the precise relation between the field variables in different formulations and discuss the Lagrangian that, when written in terms of these variables, makes a left-right factorization manifest.Comment: 18 pages, v2: reference added, to appear in JHE
    corecore