720 research outputs found
Spectral splits of neutrinos as a BCS-BEC crossover type phenomenon
We show that the spectral split of a neutrino ensemble which initially
consists of electron type neutrinos, is analogous to the BCS-BEC crossover
already observed in ultra cold atomic gas experiments. Such a neutrino ensemble
mimics the deleptonization burst of a core collapse supernova. Although these
two phenomena belong to very different domains of physics, the propagation of
neutrinos from highly interacting inner regions of the supernova to the vacuum
is reminiscent of the evolution of Cooper pairs between weak and strong
interaction regimes during the crossover. The Hamiltonians and the
corresponding many-body states undergo very similar transformations if one
replaces the pair quasispin of the latter with the neutrino isospin of the
former.Comment: 9 pages, 5 figure
Magnetodielectric coupling and phonon properties of compressively strained EuTiO3 thin films deposited on LSAT
Compressively strained epitaxial (001) EuTiO3 thin films of tetragonal
symmetry have been deposited on (001) (LaAlO3)_0.29-(SrAl_{1/2}Ta_{1/2}O3)_0.71
(LSAT) substrates by reactive molecular-beam epitaxy. Enhancement of the Neel
temperature by 1 K with 0.9% compressive strain was revealed. The polar phonons
ofthe films have been investigated as a function of temperature and magnetic
field by means of infrared reflectance spectroscopy. All three infrared active
phonons show strongly stiffened frequencies compared to bulk EuTiO3 in
accordance with first principles calculations. The phonon frequencies exhibit
gradual softening on cooling leading to an increase in static permittivity. A
new polar phonon with frequency near the TO1 soft mode was detected below 150
K. The new mode coupled with the TO1 mode was assigned as the optical phonon
from the Brillouin zone edge, which is activated in infrared spectra due to an
antiferrodistortive phase transition and due to simultaneous presence of polar
and/or magnetic nanoclusters. In the antiferromagnetic phase we have observed a
remarkable softening of the lowest-frequency polar phonon under an applied
magnetic field, which qualitatively agrees with first principles calculations.
This demonstrates the strong spin-phonon coupling in EuTiO3, which is
responsible for the pronounced dependence of its static permittivity on
magnetic field in the antiferromagnetic phase.Comment: Submitted to Phys. Rev.
Peningkatan Nilai Kalori pada Batubara Lignit dengan Metode Aglomerasi Air dan Minyak Sawit pada PT. Indonesia Power Ujp Pltu Barru
Penggunaan batubara di PLTU sangat bergantung kepada kualitas batubara yang digunakan, karena semakin tinggi kualitas batubara maka akan memaksimalkan pembakaran dan secara langsung akan berdampak pada produksi listrik yang dihasilkan. Penelitian ini bertujuan untuk mengetahui peningkatan nilai kalori pada batubara lignit. Pada penelitian ini digunakan metode aglomerasi dengan media air dan minyak sawit yang pada setiap sampel diberi perlakukan yang sama namun mengalami peningkatan yang berbeda. Ada tiga sampel yang digunakan pada penelitian ini dimana pada setiap sampel memiliki komposisi batubara lignit seberat 1 gram, minyak sawit sebanyak 10,20,30 ml dan air sebanyak 100 ml. Hasil penelitian ini menunjukkan bahwa semakin banyak konsentrasi minyak maka semakin tinggi kadar karbon yang diikat, sehingga dapat meningkatkan nilai kalori batubara. Dilihat dari konsentrasi 30% pada setiap sampel batubara mengalami peningkatan nilai kalori yang sebelumnya 3.765,23 cal/gr menjadi 5.279,46 cal/gr pada sampel pertama, 3.567,44 cal/gr menjadi 4.989,07 cal/gr pada sampel kedua dan 4.026,07 cal/gr menjadi 5.166,98 cal/gr pada sampel ketiga. Dari hasil penelitian ini dapat disimpulkan bahwa batubara lignit yang digunakan di PLTU dapat ditingkatkan nilai kalorinya menggunakan metode aglomerasi air dan minyak sawit
Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons
We present the first experimental results on the use of a thick aligned Si
crystal acting as a quarter wave plate to induce a degree of circular
polarisation in a high energy linearly polarised photon beam. The linearly
polarised photon beam is produced from coherent bremsstrahlung radiation by 178
GeV unpolarised electrons incident on an aligned Si crystal, acting as a
radiator. The linear polarisation of the photon beam is characterised by
measuring the asymmetry in electron-positron pair production in a Ge crystal,
for different crystal orientations. The Ge crystal therefore acts as an
analyser. The birefringence phenomenon, which converts the linear polarisation
to circular polarisation, is observed by letting the linearly polarised photons
beam pass through a thick Si quarter wave plate crystal, and then measuring the
asymmetry in electron-positron pair production again for a selection of
relative angles between the crystallographic planes of the radiator, analyser
and quarter wave plate. The systematics of the difference between the measured
asymmetries with and without the quarter wave plate are predicted by theory to
reveal an evolution in the Stokes parameters from which the appearance of a
circularly polarised component in the photon beam can be demonstrated. The
measured magnitude of the circularly polarised component was consistent with
the theoretical predictions, and therefore is in indication of the existence of
the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for
publicatio
Microstructural evolution under low shear rates during Rheo processing of LM25 alloy
© ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the
inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure
Coherent bremsstrahlung, boherent pair production, birefringence and polarimetry in the 20-170 GeV energy range using aligned crystals
The processes of coherent bremsstrahlung (CB) and coherent pair production
(CPP) based on aligned crystal targets have been studied in the energy range
20-170 GeV. The experimental arrangement allowed for measurements of single
photon properties of these phenomena including their polarization dependences.
This is significant as the theoretical description of CB and CPP is an area of
active theoretical debate and development. With the theoretical approach used
in this paper both the measured cross sections and polarization observables are
predicted very well. This indicates a proper understanding of CB and CPP up to
energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to
determine the polarization parameters in our measurements. New technologies for
high energy photon beam optics including phase plates and polarimeters for
linear and circular polarization are demonstrated in this experiment. Coherent
bremsstrahlung for the strings-on-strings (SOS) orientation yields a larger
enhancement for hard photons than CB for the channeling orientations of the
crystal. Our measurements and our calculations indicate low photon
polarizations for the high energy SOS photons.Comment: 23 pages, 27 figures, 2 tables, REVTeX4 two column
Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence
The cross section for coherent pair production by linearly polarised photons
in the 20-170 GeV energy range was measured for photon aligned incidence on
ultra-high quality diamond and germanium crystals. The theoretical description
of coherent bremsstrahlung and coherent pair production phenomena is an area of
active theoretical debate and development. However, under our experimental
conditions, the theory predicted the combined cross section and polarisation
experimental observables very well indeed. In macroscopic terms, our experiment
measured a birefringence effect in pair production in a crystal. This study of
this effect also constituted a measurement of the energy dependent linear
polarisation of photons produced by coherent bremsstrahlung in aligned
crystals. New technologies for manipulating high energy photon beams can be
realised based on an improved understanding of QED phenomena at these energies.
In particular, this experiment demonstrates an efficient new polarimetry
technique. The pair production measurements were done using two independent
methods simultaneously. The more complex method using a magnet spectrometer
showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for
publicatio
Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals
The CERN-NA-59 experiment examined a wide range of electromagnetic processes
for multi-GeV electrons and photons interacting with oriented single crystals.
The various types of crystals and their orientations were used for producing
photon beams and for converting and measuring their polarisation.
The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm
thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the
String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised
photon beams.
A new crystal polarimetry technique was established for measuring the linear
polarisation of the photon beam. The polarimeter is based on the dependence of
the Coherent Pair Production (CPP) cross section in oriented single crystals on
the direction of the photon polarisation with respect to the crystal plane.
Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set
of synthetic Diamond crystals were used as analyzers of the linear
polarisation.
A birefringence phenomenon, the conversion of the linear polarisation of the
photon beam into circular polarisation, was observed. This was achieved by
letting the linearly polarised photon beam pass through a 10 cm thick Silicon
single crystal that acted as a "quarter wave plate" (QWP) as suggested by N.
Cabibbo et al.Comment: Presented at International workshop "Relativistic Channeling and
Related Coherent Phenomena", Frascati (Rome) 23-26 March 200
Effect of Moisture Content on Thermal Properties of Pumpkin Seed
The selected thermal properties, namely specific heat, thermal conductivity and thermal diffusivity were determined for pumpkin seeds in the moisture content range of 5.32-24.00% (d.b.). Specific heat was determined using the method of mixtures. Thermal conductivity was measured by the transient technique using the line heat source method assembled in a thermal conductivity probe. Specific heat, thermal conductivity, and thermal diffusivity of pumpkin seeds were found between 2.53 and 3.13 kJ kg-1K-1, 0.113, and 0.135 W m-1K-1, 9.954 10-8 and 1.289 10-7 m2 s-1, respectively, under the conditions with by changing moisture content. Specific heat and thermal conductivity of pumpkin seeds increased with increasing moisture content, while thermal diffusivity decreased with the increase in moisture content
- …
