2,216 research outputs found
Keplerian Squeezed States and Rydberg Wave Packets
We construct minimum-uncertainty solutions of the three-dimensional
Schr\"odinger equation with a Coulomb potential. These wave packets are
localized in radial and angular coordinates and are squeezed states in three
dimensions. They move on elliptical keplerian trajectories and are appropriate
for the description of the corresponding Rydberg wave packets, the production
of which is the focus of current experimental effort. We extend our analysis to
incorporate the effects of quantum defects in alkali-metal atoms, which are
used in experiments.Comment: accepted for publication in Physical Review
Fluctuation Superconductivity in Mesoscopic Aluminum Rings
Fluctuations are important near phase transitions, where they can be
difficult to describe quantitatively. Superconductivity in mesoscopic rings is
particularly intriguing because the critical temperature is an oscillatory
function of magnetic field. There is an exact theory for thermal fluctuations
in one-dimensional superconducting rings, which are therefore expected to be an
excellent model system. We measure the susceptibility of many rings, one ring
at a time, using a scanning SQUID that can isolate magnetic signals from seven
orders of magnitude larger background applied flux. We find that the
fluctuation theory describes the results and that a single parameter
characterizes the ways in which the fluctuations are especially important at
magnetic fields where the critical temperature is suppressed.Comment: Reprinted with permission from AAA
Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect
The quantum Hall effect is necessarily accompanied by low-energy excitations
localized at the edge of a two-dimensional electron system. For the case of
electrons interacting via the long-range Coulomb interaction, these excitations
are edge magnetoplasmons. We address the time evolution of localized
edge-magnetoplasmon wave packets. On short times the wave packets move along
the edge with classical E cross B drift. We show that on longer times the wave
packets can have properties similar to those of the Rydberg wave packets that
are produced in atoms using short-pulsed lasers. In particular, we show that
edge-magnetoplasmon wave packets can exhibit periodic revivals in which a
dispersed wave packet reassembles into a localized one. We propose the study of
edge-magnetoplasmon wave packets as a tool to investigate dynamical properties
of integer and fractional quantum-Hall edges. Various scenarios are discussed
for preparing the initial wave packet and for detecting it at a later time. We
comment on the importance of magnetoplasmon-phonon coupling and on quantum and
thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was
originally 3Mbyte and had to be bitmapped for submission to archive; in the
process it acquired distracting artifacts, to upload the better version, see
http://physics.indiana.edu/~uli/publ/projects.htm
The Integrability of Pauli System in Lorentz Violating Background
We systematically analyze the integrability of a Pauli system in Lorentz
violating background at the non-relativistic level both in two- and
three-dimensions. We consider the non-relativistic limit of the Dirac equation
from the QED sector of the so-called Standard Model Extension by keeping only
two types of background couplings, the vector a_mu and the axial vector b_mu.
We show that the spin-orbit interaction comes as a higher order correction in
the non-relativistic limit of the Dirac equation. Such an interaction allows
the inclusion of spin degree non-trivially, and if Lorentz violating terms are
allowed, they might be comparable under special circumstances. By including all
possible first-order derivative terms and considering the cases a\ne 0, b\ne 0,
and b_0\ne 0 one at a time, we determine the possible forms of constants of
motion operator, and discuss the existence or continuity of integrability due
to Lorentz violating background.Comment: 19 page
Elliptical Squeezed States and Rydberg Wave Packets
We present a theoretical construction for closest-to-classical wave packets
localized in both angular and radial coordinates and moving on a keplerian
orbit. The method produces a family of elliptical squeezed states for the
planar Coulomb problem that minimize appropriate uncertainty relations in
radial and angular coordinates. The time evolution of these states is studied
for orbits with different semimajor axes and eccentricities. The elliptical
squeezed states may be useful for a description of the motion of Rydberg wave
packets excited by short-pulsed lasers in the presence of external fields,
which experiments are attempting to produce. We outline an extension of the
method to include certain effects of quantum defects appearing in the
alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199
N=1 Supersymetric Quantum Mechanics in a Scenario with Lorentz-Symmetry Violation
We show in this paper that the dynamics of a non-relativistic particle with
spin, coupled to an external electromagnetic field and to a background that
breaks Lorentz symmetry, is naturally endowed with an N=1-supersymmetry. This
result is achieved in a superspace approach where the particle coordinates and
the spin degrees of freedom are components of the same supermultiplet.Comment: 6 pages, no figure
Universal quantum computation with ordered spin-chain networks
It is shown that anisotropic spin chains with gapped bulk excitations and
magnetically ordered ground states offer a promising platform for quantum
computation, which bridges the conventional single-spin-based qubit concept
with recently developed topological Majorana-based proposals. We show how to
realize the single-qubit Hadamard, phase, and pi/8 gates as well as the
two-qubit CNOT gate, which together form a fault-tolerant universal set of
quantum gates. The gates are implemented by judiciously controlling Ising
exchange and magnetic fields along a network of spin chains, with each
individual qubit furnished by a spin-chain segment. A subset of single-qubit
operations is geometric in nature, relying on control of anisotropy of spin
interactions rather than their strength. We contrast topological aspects of the
anisotropic spin-chain networks to those of p-wave superconducting wires
discussed in the literature.Comment: 9 pages, 3 figure
- …
