2,216 research outputs found

    Keplerian Squeezed States and Rydberg Wave Packets

    Get PDF
    We construct minimum-uncertainty solutions of the three-dimensional Schr\"odinger equation with a Coulomb potential. These wave packets are localized in radial and angular coordinates and are squeezed states in three dimensions. They move on elliptical keplerian trajectories and are appropriate for the description of the corresponding Rydberg wave packets, the production of which is the focus of current experimental effort. We extend our analysis to incorporate the effects of quantum defects in alkali-metal atoms, which are used in experiments.Comment: accepted for publication in Physical Review

    Fluctuation Superconductivity in Mesoscopic Aluminum Rings

    Full text link
    Fluctuations are important near phase transitions, where they can be difficult to describe quantitatively. Superconductivity in mesoscopic rings is particularly intriguing because the critical temperature is an oscillatory function of magnetic field. There is an exact theory for thermal fluctuations in one-dimensional superconducting rings, which are therefore expected to be an excellent model system. We measure the susceptibility of many rings, one ring at a time, using a scanning SQUID that can isolate magnetic signals from seven orders of magnitude larger background applied flux. We find that the fluctuation theory describes the results and that a single parameter characterizes the ways in which the fluctuations are especially important at magnetic fields where the critical temperature is suppressed.Comment: Reprinted with permission from AAA

    Edge-Magnetoplasmon Wave-Packet Revivals in the Quantum Hall Effect

    Get PDF
    The quantum Hall effect is necessarily accompanied by low-energy excitations localized at the edge of a two-dimensional electron system. For the case of electrons interacting via the long-range Coulomb interaction, these excitations are edge magnetoplasmons. We address the time evolution of localized edge-magnetoplasmon wave packets. On short times the wave packets move along the edge with classical E cross B drift. We show that on longer times the wave packets can have properties similar to those of the Rydberg wave packets that are produced in atoms using short-pulsed lasers. In particular, we show that edge-magnetoplasmon wave packets can exhibit periodic revivals in which a dispersed wave packet reassembles into a localized one. We propose the study of edge-magnetoplasmon wave packets as a tool to investigate dynamical properties of integer and fractional quantum-Hall edges. Various scenarios are discussed for preparing the initial wave packet and for detecting it at a later time. We comment on the importance of magnetoplasmon-phonon coupling and on quantum and thermal fluctuations.Comment: 18 pages, RevTex, 7 figures and 2 tables included, Fig. 5 was originally 3Mbyte and had to be bitmapped for submission to archive; in the process it acquired distracting artifacts, to upload the better version, see http://physics.indiana.edu/~uli/publ/projects.htm

    The Integrability of Pauli System in Lorentz Violating Background

    Get PDF
    We systematically analyze the integrability of a Pauli system in Lorentz violating background at the non-relativistic level both in two- and three-dimensions. We consider the non-relativistic limit of the Dirac equation from the QED sector of the so-called Standard Model Extension by keeping only two types of background couplings, the vector a_mu and the axial vector b_mu. We show that the spin-orbit interaction comes as a higher order correction in the non-relativistic limit of the Dirac equation. Such an interaction allows the inclusion of spin degree non-trivially, and if Lorentz violating terms are allowed, they might be comparable under special circumstances. By including all possible first-order derivative terms and considering the cases a\ne 0, b\ne 0, and b_0\ne 0 one at a time, we determine the possible forms of constants of motion operator, and discuss the existence or continuity of integrability due to Lorentz violating background.Comment: 19 page

    Elliptical Squeezed States and Rydberg Wave Packets

    Get PDF
    We present a theoretical construction for closest-to-classical wave packets localized in both angular and radial coordinates and moving on a keplerian orbit. The method produces a family of elliptical squeezed states for the planar Coulomb problem that minimize appropriate uncertainty relations in radial and angular coordinates. The time evolution of these states is studied for orbits with different semimajor axes and eccentricities. The elliptical squeezed states may be useful for a description of the motion of Rydberg wave packets excited by short-pulsed lasers in the presence of external fields, which experiments are attempting to produce. We outline an extension of the method to include certain effects of quantum defects appearing in the alkali-metal atoms used in experiments.Comment: published in Phys. Rev. A, vol. 52, p. 2234, Sept. 199

    N=1 Supersymetric Quantum Mechanics in a Scenario with Lorentz-Symmetry Violation

    Get PDF
    We show in this paper that the dynamics of a non-relativistic particle with spin, coupled to an external electromagnetic field and to a background that breaks Lorentz symmetry, is naturally endowed with an N=1-supersymmetry. This result is achieved in a superspace approach where the particle coordinates and the spin degrees of freedom are components of the same supermultiplet.Comment: 6 pages, no figure

    Universal quantum computation with ordered spin-chain networks

    Full text link
    It is shown that anisotropic spin chains with gapped bulk excitations and magnetically ordered ground states offer a promising platform for quantum computation, which bridges the conventional single-spin-based qubit concept with recently developed topological Majorana-based proposals. We show how to realize the single-qubit Hadamard, phase, and pi/8 gates as well as the two-qubit CNOT gate, which together form a fault-tolerant universal set of quantum gates. The gates are implemented by judiciously controlling Ising exchange and magnetic fields along a network of spin chains, with each individual qubit furnished by a spin-chain segment. A subset of single-qubit operations is geometric in nature, relying on control of anisotropy of spin interactions rather than their strength. We contrast topological aspects of the anisotropic spin-chain networks to those of p-wave superconducting wires discussed in the literature.Comment: 9 pages, 3 figure
    corecore