2,479 research outputs found
Thermal annealing of GaAs concentrator solar cells
Isochronal and isothermal annealing tests were performed on GaAs concentrator cells which were irradiated with electrons of various energies to fluences up to 1 x 10(exp 16) e/sq cm. The results include: (1) For cells irradiated with electrons from 0.7 to 2.3 MeV, recovery decreases with increasing electron energy. (2) As determined by the un-annealed fractions, isothermal and isochronal annealing produce the same recovery. Also, cells irradiated to 3 x 10(exp 15) or 1 x 10(exp 16) e/sq cm recover to similar un-annealed fractions. (3) Some significant annealing is being seen at 150 C although very long times are required
Circuits and circuit testing for spaceborne redundant digital systems Special technical report no. 3
Design and testing of majority logic redundancy for spaceborne and GSE digital system
Effect of dislocations on properties of heteroepitaxial InP solar cells
The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells
Continuous cough monitoring using ambient sound recording during convalescence from a COPD exacerbation
Purpose Cough is common in chronic obstructive pulmonary disease (COPD) and is associated with frequent exacerbations and increased mortality. Cough increases during acute exacerbations (AE-COPD), representing a possible metric of clinical deterioration. Conventional cough monitors accurately report cough counts over short time periods. We describe a novel monitoring system which we used to record cough continuously for up to 45 days during AE-COPD convalescence. Methods This is a longitudinal, observational study of cough monitoring in AE-COPD patients discharged from a single teaching-hospital. Ambient sound was recorded from two sites in the domestic environment and analysed using novel cough classifier software. For comparison, the validated hybrid HACC/LCM cough monitoring system was used on days 1, 5, 20 and 45. Patients were asked to record symptoms daily using diaries. Results Cough monitoring data were available for 16 subjects with a total of 568 monitored days. Daily cough count fell significantly from mean±SEM 272.7±54.5 on day 1 to 110.9±26.3 on day 9 (p<0.01) before plateauing. The absolute cough count detected by the continuous monitoring system was significantly lower than detected by the hybrid HACC/LCM system but normalised counts strongly correlated (r=0.88, p<0.01) demonstrating an ability to detect trends. Objective cough count and subjective cough scores modestly correlated (r=0.46). Conclusions Cough frequency declines significantly following AE-COPD and the reducing trend can be detected using continuous ambient sound recording and novel cough classifier software. Objective measurement of cough frequency has the potential to enhance our ability to monitor the clinical state in patients with COPD
A Hamiltonian approach for explosive percolation
We introduce a cluster growth process that provides a clear connection
between equilibrium statistical mechanics and an explosive percolation model
similar to the one recently proposed by Achlioptas et al. [Science 323, 1453
(2009)]. We show that the following two ingredients are essential for obtaining
an abrupt (first-order) transition in the fraction of the system occupied by
the largest cluster: (i) the size of all growing clusters should be kept
approximately the same, and (ii) the inclusion of merging bonds (i.e., bonds
connecting vertices in different clusters) should dominate with respect to the
redundant bonds (i.e., bonds connecting vertices in the same cluster).
Moreover, in the extreme limit where only merging bonds are present, a complete
enumeration scheme based on tree-like graphs can be used to obtain an exact
solution of our model that displays a first-order transition. Finally, the
proposed mechanism can be viewed as a generalization of standard percolation
that discloses an entirely new family of models with potential application in
growth and fragmentation processes of real network systems.Comment: 4 pages, 4 figure
Fluctuating Bond Aggregation: a Model for Chemical Gel Formation
The Diffusion-Limited Cluster-Cluster Aggregation (DLCA) model is modified by
including cluster deformations using the {\it bond fluctuation} algorithm. From
3 computer simulations, it is shown that, below a given threshold value
of the volumic fraction , the realization of all intra-aggregate
bonding possibilities prevents the formation of a gelling network. For ,
the sol-gel transition occurs at a time which, in contrast to DLCA,
doesnot diverge with the box size. Several results are reported including small
angle scattering curves and possible applications are discussed.Comment: RevTex, 9 pages + 3 postscript figures appended using "uufiles". To
appear in Phys. Rev. Let
Band Formation during Gaseous Diffusion in Aerogels
We study experimentally how gaseous HCl and NH_3 diffuse from opposite sides
of and react in silica aerogel rods with porosity of 92 % and average pore size
of about 50 nm. The reaction leads to solid NH_4Cl, which is deposited in thin
sheet-like structures. We present a numerical study of the phenomenon. Due to
the difference in boundary conditions between this system and those usually
studied, we find the sheet-like structures in the aerogel to differ
significantly from older studies. The influence of random nucleation centers
and inhomogeneities in the aerogel is studied numerically.Comment: 7 pages RevTex and 8 figures. Figs. 4-8 in Postscript, Figs. 1-3 on
request from author
What do cyclists need to see to avoid single-bicycle crashes?
The number of single-bicycle crash victims is substantial in countries with high levels of cycling. To study the role of visual characteristics of the infrastructure, such as pavement markings, in single-bicycle crashes, a study in two steps was conducted. In Study 1, a questionnaire study was conducted among bicycle crash victims (n = 734). Logistic regression was used to study the relationship between the crashes and age, light condition, alcohol use, gaze direction and familiarity with the crash scene. In Study 2, the image degrading and edge detection method (IDED-method) was used to investigate the visual characteristics of 21 of the crash scenes. The results of the studies indicate that crashes, in which the cyclist collided with a bollard or road narrowing or rode off the road, were related to the visual characteristics of bicycle facilities. Edge markings, especially in curves of bicycle tracks, and improved conspicuity of bollards are recommended. Statement of Relevance: Elevated single-bicycle crash numbers are common in countries with high levels of cycling. No research has been conducted on what cyclists need to see to avoid this type of crash. The IDED-method to investigate crash scenes is new and proves to be a powerful tool to quantify 'visual accessibility'. © 2011 Taylor & Francis
Research on failure free systems Final report
Development and testing of integrated circuits and redundant systems for circuit reliability and failure free system
Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms
Ultra-low density polymers, metals, and ceramic nanofoams are valued for
their high strength-to-weight ratio, high surface area and insulating
properties ascribed to their structural geometry. We obtain the labrynthine
internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging.
Finite element analysis from the structure reveals mechanical properties
consistent with bulk samples and with a diffusion limited cluster aggregation
model, while excess mass on the nodes discounts the dangling fragments
hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
- …
