1,157 research outputs found
2-Vertex Connectivity in Directed Graphs
We complement our study of 2-connectivity in directed graphs, by considering
the computation of the following 2-vertex-connectivity relations: We say that
two vertices v and w are 2-vertex-connected if there are two internally
vertex-disjoint paths from v to w and two internally vertex-disjoint paths from
w to v. We also say that v and w are vertex-resilient if the removal of any
vertex different from v and w leaves v and w in the same strongly connected
component. We show how to compute the above relations in linear time so that we
can report in constant time if two vertices are 2-vertex-connected or if they
are vertex-resilient. We also show how to compute in linear time a sparse
certificate for these relations, i.e., a subgraph of the input graph that has
O(n) edges and maintains the same 2-vertex-connectivity and vertex-resilience
relations as the input graph, where n is the number of vertices.Comment: arXiv admin note: substantial text overlap with arXiv:1407.304
Finding 2-Edge and 2-Vertex Strongly Connected Components in Quadratic Time
We present faster algorithms for computing the 2-edge and 2-vertex strongly
connected components of a directed graph, which are straightforward
generalizations of strongly connected components. While in undirected graphs
the 2-edge and 2-vertex connected components can be found in linear time, in
directed graphs only rather simple -time algorithms were known. We use
a hierarchical sparsification technique to obtain algorithms that run in time
. For 2-edge strongly connected components our algorithm gives the
first running time improvement in 20 years. Additionally we present an -time algorithm for 2-edge strongly connected components, and thus
improve over the running time also when . Our approach
extends to k-edge and k-vertex strongly connected components for any constant k
with a running time of for edges and for vertices
Microwave Gaseous Discharges
Contains reports on six research projects.Atomic Energy Commission under Contract AT(30-1) 184
Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy
Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function
Schur Q-functions and degeneracy locus formulas for morphisms with symmetries
We give closed-form formulas for the fundamental classes of degeneracy loci
associated with vector bundle maps given locally by (not necessary square)
matrices which are symmetric (resp. skew-symmetric) w.r.t. the main diagonal.
Our description uses essentially Schur Q-polynomials of a bundle, and is based
on a certain push-forward formula for these polynomials in a Grassmann bundle.Comment: 22 pages, AMSTEX, misprints corrected, exposition improved. to appear
in the Proceedings of Intersection Theory Conference in Bologna, "Progress in
Mathematics", Birkhause
Triangle-Free Penny Graphs: Degeneracy, Choosability, and Edge Count
We show that triangle-free penny graphs have degeneracy at most two, list
coloring number (choosability) at most three, diameter , and
at most edges.Comment: 10 pages, 2 figures. To appear at the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
Resolution of null fiber and conormal bundles on the Lagrangian Grassmannian
We study the null fiber of a moment map related to dual pairs. We construct
an equivariant resolution of singularities of the null fiber, and get conormal
bundles of closed -orbits in the Lagrangian Grassmannian as the
categorical quotient. The conormal bundles thus obtained turn out to be a
resolution of singularities of the closure of nilpotent -orbits, which
is a "quotient" of the resolution of the null fiber.Comment: 17 pages; completely revised and add reference
Recommended from our members
Containment and equivalence of weighted automata: Probabilistic and max-plus cases
This paper surveys some results regarding decision problems for probabilistic and max-plus automata, such as containment and equivalence. Probabilistic and max-plus automata are part of the general family of weighted automata, whose semantics are maps from words to real values. Given two weighted automata, the equivalence problem asks whether their semantics are the same, and the containment problem whether one is point-wise smaller than the other one. These problems have been studied intensively and this paper will review some techniques used to show (un)decidability and state a list of open questions that still remain
Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy
Pixel and Voxel Representations of Graphs
We study contact representations for graphs, which we call pixel
representations in 2D and voxel representations in 3D. Our representations are
based on the unit square grid whose cells we call pixels in 2D and voxels in
3D. Two pixels are adjacent if they share an edge, two voxels if they share a
face. We call a connected set of pixels or voxels a blob. Given a graph, we
represent its vertices by disjoint blobs such that two blobs contain adjacent
pixels or voxels if and only if the corresponding vertices are adjacent. We are
interested in the size of a representation, which is the number of pixels or
voxels it consists of.
We first show that finding minimum-size representations is NP-complete. Then,
we bound representation sizes needed for certain graph classes. In 2D, we show
that, for -outerplanar graphs with vertices, pixels are
always sufficient and sometimes necessary. In particular, outerplanar graphs
can be represented with a linear number of pixels, whereas general planar
graphs sometimes need a quadratic number. In 3D, voxels are
always sufficient and sometimes necessary for any -vertex graph. We improve
this bound to for graphs of treewidth and to
for graphs of genus . In particular, planar graphs
admit representations with voxels
- …
