8,865 research outputs found
Tracer sensitive tapes
A leak detection system has been developed, consisting of a tape that can be wrapped around possible leak sites on a system pressurized with air or gaseous nitrogen. Carbon monoxide, at a level of 100 to 1000 parts per million is used as a trace gas in the pressurized system. The sensitive element of the tape is palladium chloride supported on specially prepared silica gel and specially dried. At a CO level of 100 ppm and a leak rate of 10-20 ml/hr, discoloration of the sensitive element is observed in 1.5 to 3 min. The tape and trace gas are compatible with aerospace hardware, safe to handle, and economically reasonable to produce and handle
Application of Pade Approximants to Determination of alpha_s(M_Z^2) from Hadronic Event Shape Observables in e+e- Annihilation
We have applied Pade approximants to perturbative QCD calculations of event
shape observables in e+e- --> hadrons. We used the exact O(alpha_s^2)
prediction and the [0/1] Pade approximant to estimate the O(alpha_s^3) term for
15 observables, and in each case determined alpha_s(M_Z^2) from comparison with
hadronic Z^0 decay data from the SLD experiment. We found the scatter among the
alpha_s(M_Z^2) values to be significantly reduced compared with the standard
O(alpha_s^2) determination, implying that the Pade method provides at least a
partial approximation of higher-order perturbative contributions to event shape
observables.Comment: 15 pages, 1 EPS figure, Submitted to Physics Letters
QCD: Challenges for the Future
Despite many experimental verifications of the correctness of our basic
understanding of QCD, there remain numerous open questions in strong
interaction physics and we focus on the role of future colliders in addressing
these questions. We discuss possible advances in the measurement of ,
in the study of parton distribution functions, and in the understanding of low
physics at present colliders and potential new facilities. We also touch
briefly on the role of spin physics in advancing our understanding of QCD.Comment: 12 pages, LATEX2e with snow2e, epsfig and 2 figures. Also available
at http://penguin.phy.bnl.gov/~dawson/qcdsnow.ps . QCD working group summary
at DPF/DPB Summer Study on New Directions for High Energy Physics, Snowmass,
CO, June 25- July 12, 199
Comment on "Pulsar Velocities and Neutrino Oscillations"
In a recent Letter, Kusenko and Segre proposed a new mechanism to explain the
observed proper motions of pulsars. Their mechanism was based on the asymmetric
neutrino emission induced by neutrino oscillations in the protoneutron star
magnetic field. In this note I point out that their estimate of the asymmetry
in the neutrino emission is incorrect. A proper calculation shows that their
mechanism at least requires a magnetic field of 10**16 G in order to produce
the observed average pulsar velocity.Comment: 4 pages, RevTe
Sympathetic cooling of He ions in a radiofrequency trap
We have generated Coulomb crystals of ultracold He ions in a linear
radiofrequency trap, by sympathetic cooling via laser--cooled Be.
Stable crystals containing up to 150 localized He ions at 20 mK were
obtained. Ensembles or single ultracold He ions open up interesting
perspectives for performing precision tests of QED and measurements of nuclear
radii. The present work also indicates the feasibility of cooling and
crystallizing highly charged atomic ions using Be as coolant.Comment: 4 pages, 2 figure
Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 2: Methane
Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003–2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 µm absorption band), CH4 (1.66 µm) and oxygen (O2 A-band at 0.76 µm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCH4 data set. The XCO2 data set is discussed in a separate paper (Part 1). For 2003 we present detailed comparisons with the TM5 model which has been optimally matched to highly accurate but sparse methane surface observations. After accounting for a systematic low bias of ~2% agreement with TM5 is typically within 1–2%. We investigated to what extent the SCIAMACHY XCH4 is influenced by the variability of atmospheric CO2 using global CO2 fields from NOAA's CO2 assimilation system CarbonTracker. We show that the CO2 corrected and uncorrected XCH4 spatio-temporal pattern are very similar but that agreement with TM5 is better for the CarbonTracker CO2 corrected XCH4. In line with previous studies (e.g., Frankenberg et al., 2005b) we find higher methane over the tropics compared to the model. We show that tropical methane is also higher when normalizing the CH4 columns with retrieved O2 columns instead of CO2. In consistency with recent results of Frankenberg et al. (2008b) it is shown that the magnitude of the retrieved tropical methane is sensitive to the choice of the spectroscopic line parameters of water vapour. Concerning inter-annual variability we find similar methane spatio-temporal pattern for 2003 and 2004. For 2005 the retrieved methane shows significantly higher variability compared to the two previous years, most likely due to somewhat larger noise of the spectral measurement
Equation-of-State Dependent Features in Shock-Oscillation Modulated Neutrino and Gravitational-Wave Signals from Supernovae
We present 2D hydrodynamic simulations of the long-time accretion phase of a
15 solar mass star after core bounce and before the launch of a supernova
explosion. Our simulations are performed with the Prometheus-Vertex code,
employing multi-flavor, energy-dependent neutrino transport and an effective
relativistic gravitational potential. Testing the influence of a stiff and a
soft equation of state for hot neutron star matter, we find that the non-radial
mass motions in the supernova core due to the standing accretion shock
instability (SASI) and convection impose a time variability on the neutrino and
gravitational-wave signals. These variations have larger amplitudes as well as
higher frequencies in the case of a more compact nascent neutron star. After
the prompt shock-breakout burst of electron neutrinos, a more compact accreting
remnant radiates neutrinos with higher luminosities and larger mean energies.
The observable neutrino emission in the direction of SASI shock oscillations
exhibits a modulation of several 10% in the luminosities and ~1 MeV in the mean
energies with most power at typical SASI frequencies of 20-100 Hz. At times
later than 50-100 ms after bounce the gravitational-wave amplitude is dominated
by the growing low-frequency (<200 Hz) signal associated with anisotropic
neutrino emission. A high-frequency wave signal is caused by nonradial gas
flows in the outer neutron star layers, which are stirred by anisotropic
accretion from the SASI and convective regions. The gravitational-wave power
then peaks at about 300-800 Hz with distinctively higher spectral frequencies
originating from the more compact and more rapidly contracting neutron star.
The detectability of the SASI effects in the neutrino and gravitational-wave
signals is briefly discussed. (abridged)Comment: 21 pages, 11 figures, 45 eps files; revised version including
discussion of signal detectability; accepted by Astronomy & Astrophysics;
high-resolution images can be obtained upon reques
Supernova Neutrino Opacity from Nucleon-Nucleon Bremsstrahlung and Related Processes
Elastic scattering on nucleons, \nu N -> N \nu, is the dominant supernova
(SN) opacity source for \mu and \tau neutrinos. The dominant energy- and
number-changing processes were thought to be \nu e^- -> e^- \nu and \nu\bar \nu
e^+ e^- until Suzuki (1993) showed that the bremsstrahlung process \nu\bar
\nu NN NN was actually more important. We find that for energy exchange,
the related ``inelastic scattering process'' \nu NN NN \nu is even more
effective by about a factor of 10. A simple estimate implies that the \nu_\mu
and \nu_\tau spectra emitted during the Kelvin-Helmholtz cooling phase are much
closer to that of \nu\bar_e than had been thought previously. To facilitate a
numerical study of the spectra formation we derive a scattering kernel which
governs both bremsstrahlung and inelastic scattering and give an analytic
approximation formula. We consider only neutron-neutron interactions, we use a
one-pion exchange potential in Born approximation, nonrelativistic neutrons,
and the long-wavelength limit, simplifications which appear justified for the
surface layers of a SN core. We include the pion mass in the potential and we
allow for an arbitrary degree of neutron degeneracy. Our treatment does not
include the neutron-proton process and does not include nucleon-nucleon
correlations. Our perturbative approach applies only to the SN surface layers,
i.e. to densities below about 10^{14} g cm^{-3}.Comment: 36 pages, LaTeX, 6 postscript figs included, matches version accepted
for publication in Astrophysical Journa
Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands
We find that a theoretical fit to all the HD 209458b data at secondary
eclipse requires that the dayside atmosphere of HD 209458b have a thermal
inversion and a stratosphere. This inversion is caused by the capture of
optical stellar flux by an absorber of uncertain origin that resides at
altitude. One consequence of stratospheric heating and temperature inversion is
the flipping of water absorption features into emission features from the near-
to the mid-infrared and we see evidence of such a water emission feature in the
recent HD 209458b IRAC data of Knutson et al. In addition, an upper-atmosphere
optical absorber may help explain both the weaker-than-expected Na D feature
seen in transit and the fact that the transit radius at 24 m is smaller
than the corresponding radius in the optical. Moreover, it may be a factor in
why HD 209458b's optical transit radius is as large as it is. We speculate on
the nature of this absorber and the planets whose atmospheres may, or may not,
be affected by its presence.Comment: Accepted to the Astrophysical Journal Letters on August 28, 2007, six
pages in emulateapj forma
- …
