23,523 research outputs found
Talbot effect for dispersion in linear optical fibers and a wavelet approach
We shortly recall the mathematical and physical aspects of Talbot's
self-imaging effect occurring in near-field diffraction. In the rational
paraxial approximation, the Talbot images are formed at distances z=p/q, where
p and q are coprimes, and are superpositions of q equally spaced images of the
original binary transmission (Ronchi) grating. This interpretation offers the
possibility to express the Talbot effect through Gauss sums. Here, we pay
attention to the Talbot effect in the case of dispersion in optical fibers
presenting our considerations based on the close relationships of the
mathematical representations of diffraction and dispersion. Although dispersion
deals with continuous functions, such as gaussian and supergaussian pulses,
whereas in diffraction one frequently deals with discontinuous functions, the
mathematical correspondence enables one to characterize the Talbot effect in
the two cases with minor differences. In addition, we apply, for the first time
to our knowledge, the wavelet transform to the fractal Talbot effect in both
diffraction and fiber dispersion. In the first case, the self similar character
of the transverse paraxial field at irrational multiples of the Talbot distance
is confirmed, whereas in the second case it is shown that the field is not self
similar for supergaussian pulses. Finally, a high-precision measurement of
irrational distances employing the fractal index determined with the wavelet
transform is pointed outComment: 15 text pages + 7 gif figs, accepted at Int. J. Mod. Phys. B, final
version of a contribution at ICSSUR-Besancon (May/05). Color figs available
from the first autho
Ferromagnetism in Fe-doped Ba6Ge25 Chiral Clathrate
We have successfully synthesized a Ba6Ge25 clathrate, substituting 3 Fe per
formula unit by Ge. This chiral clathrate has Ge sites forming a framework of
closed cages and helical tunnel networks. Fe atoms randomly occupy these sites,
and exhibit high-spin magnetic moments. A ferromagnetic transition is observed
with Tc = 170 K, the highest observed Tc for a magnetic clathrate. However, the
magnetic phase is significantly disordered, and exhibits a transformation to a
re-entrant spin glass phase. This system has a number of features in common
with other dilute magnetic semiconductors.Comment: Submitted to Applied Physics Letters. Fig. 1 resolution reduced for
online archive versio
Limits to the presence of transiting circumbinary planets in CoRoT data
The CoRoT mission during its flight-phase 2007-2012 delivered the
light-curves for over 2000 eclipsing binaries. Data from the Kepler mission
have proven the existence of several transiting circumbinary planets. Albeit
light-curves from CoRoT have typically lower precision and shorter coverage,
CoRoT's number of targets is similar to Kepler, and some of the known
circumbinary planets could potentially be detected in CoRoT data as well. The
aim of this work has been a revision of the entire CoRoT data-set for the
presence of circumbinary planets, and the derivation of limits to the
abundances of such planets. We developed a code which removes the light curve
of the eclipsing binaries and searches for quasi-periodic transit-like features
in a light curve after removal of binary eclipses and instrumental features.
The code needs little information on the sample systems and can be used for
other space missions as well, like Kepler, K2, TESS and PLATO. The code is
broad in the requirements leading to detections, but was tuned to deliver an
amount of detections that is manageable in a subsequent, mainly visual,
revision about their nature. In the CoRoT sample we identified three planet
candidates whose transits would have arisen from a single pass across the
central binary. No candidates remained however with transit events from
multiple planetary orbits. We calculated the upper limits for the number of
Jupiter, Saturn and Neptune sized planets in co-planar orbits for different
orbital period ranges. We found that there are much less giant planets in
short-periodic orbits around close binary systems than around single stars.Comment: Accepted for publication in A&A, 11 pages, 4 figures and 4 tables.
Updated to fix error in acknowledgemen
The effect of stellar limb darkening values on the accuracy of the planet radii derived from photometric transit observations
We study how the precision of the exoplanet radius determination is affected
by our present knowledge of limb darkening in two cases: when we fix the limb
darkening coefficients and when we adjust them. We also investigate the effects
of spots in one-colour photometry. We study the effect of limb darkening on the
planetary radius determination both via analytical expressions and by numerical
experiments. We also compare some of the existing limb darkening tables. When
stellar spots affect the fit, we replace the limb darkening coefficients,
calculated for the unspotted cases, with effective limb darkening coefficients
to describe the effect of the spots. There are two important cases. (1) When
one fixes the limb darkening values according to some theoretical predictions,
the inconsistencies of the tables do not allow us to reach accuracy in the
planetary radius of better than 1-10% (depending on the impact parameter) if
the host star's surface effective temperature is higher than 5000 K. Below 5000
K the radius ratio determination may contain even 20% error. (2) When one
allows adjustment of the limb darkening coefficients, the a/Rs ratio, the
planet-to-stellar radius ratio, and the impact parameter can be determined with
sufficient accuracy (<1%), if the signal-to-noise ratio is high enough.
However, the presence of stellar spots and faculae can destroy the agreement
between the limb darkening tables and the fitted limb darkening coefficients,
but this does not affect the precision of the planet radius determination. We
also find that it is necessary to fit the contamination factor, too. We
conclude that the present inconsistencies of theoretical stellar limb darkening
tables suggests one should not fix the limb darkening coefficients. When one
allows them to be adjusted, then the planet radius, impact parameter, and the
a/Rs can be obtained with the required precision.Comment: Astronomy & Astrophysics Vol. 549, A9 (2013) - 11 page
La matriz imaginaria de las nuevas tecnologías
La expresión “nuevas tecnologías de la información y de la comunicación” y su realidad constituyen el centro de los discursos periodísticos, políticos y empresariales. Su uso indiscriminado como sujeto de promesas de todo tipo obliga a la realización de un análisis de sus condiciones de posibilidad y de representación. El presente artículo analiza esa matriz imaginaria de la sociedad contemporánea, dentro de la cual se hacen factibles las particulares significaciones que las nuevas tecnologías adquieren en la sociedad actual
Recent topics of mesic atoms and mesic nuclei -- mesic nuclei exist ?--
We study -meson production in nuclei to investigate the in-medium
modification of the -meson spectral function at finite density. We
consider (), () and () reactions to produce a
-meson inside the nucleus and evaluate the effects of the medium
modifications to reaction cross sections. The structures of the bound states,
-mesic nuclei, are also studied. For strong absorptive interaction cases,
we need to know the spectrum shape in a wide energy region to deduce the
properties of .Comment: Talk given at EXA08, Vienna, September 2008. To be published in the
Proceedings, Hyperfine Interactions. 6 pages, 6 figure
Nonlinear spin-polarized transport through a ferromagnetic domain wall
A domain wall separating two oppositely magnetized regions in a ferromagnetic
semiconductor exhibits, under appropriate conditions, strongly nonlinear I-V
characteristics similar to those of a p-n diode. We study these characteristics
as functions of wall width and temperature. As the width increases or the
temperature decreases, direct tunneling between the majority spin bands
decreases the effectiveness of the diode. This has important implications for
the zero-field quenched resistance of magnetic semiconductors and for the
design of a recently proposed spin transistor.Comment: 5 pages, 3 figure
- …
