791 research outputs found
A scaling theory of 3D spinodal turbulence
A new scaling theory for spinodal decomposition in the inertial hydrodynamic
regime is presented. The scaling involves three relevant length scales, the
domain size, the Taylor microscale and the Kolmogorov dissipation scale. This
allows for the presence of an inertial "energy cascade", familiar from theories
of turbulence, and improves on earlier scaling treatments based on a single
length: these, it is shown, cannot be reconciled with energy conservation. The
new theory reconciles the t^{2/3} scaling of the domain size, predicted by
simple scaling, with the physical expectation of a saturating Reynolds number
at late times.Comment: 5 pages, no figures, revised version submitted to Phys Rev E Rapp
Comm. Minor changes and clarification
Scaling and energy transfer in rotating turbulence
The inertial-range properties of quasi-stationary hydrodynamic turbulence
under solid-body rotation are studied via high-resolution direct numerical
simulations. For strong rotation the nonlinear energy cascade exhibits
depletion and a pronounced anisotropy with the energy flux proceeding mainly
perpendicularly to the rotation axis. This corresponds to a transition towards
a quasi-two-dimensional flow similar to a linear Taylor-Proudman state. In
contrast to the energy spectrum along the rotation axis which does not scale
self-similarly, the perpendicular spectrum displays an inertial range with
-behavior. A new phenomenology gives a rationale for the
observations. The scaling exponents of structure functions up to
order measured perpendicular to the rotation axis indicate reduced
intermittency with increasing rotation rate. The proposed phenomenology is
consistent with the inferred asymptotic non-intermittent behavior
.Comment: to be published in Europhysics Letters (www.epletters.net), minor
changes to match version in prin
On two-dimensionalization of three-dimensional turbulence in shell models
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model,
the signatures of so-called two-dimensionalization effect of three-dimensional
incompressible, homogeneous, isotropic fully developed unforced turbulence have
been studied and reproduced. Within the framework of shell models we have
obtained the following results: (i) progressive steepening of the energy
spectrum with increased strength of the rotation, and, (ii) depletion in the
energy flux of the forward forward cascade, sometimes leading to an inverse
cascade. The presence of extended self-similarity and self-similar PDFs for
longitudinal velocity differences are also presented for the rotating 3D
turbulence case
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions
Intellectual Property, Open Science and Research Biobanks
In biomedical research and translational medicine, the ancient war between exclusivity (private control over information) and access to information is proposing again on a new battlefield: research biobanks. The latter are becoming increasingly important (one of the ten ideas changing the world, according to Time magazine) since they allow to collect, store and distribute in a secure and professional way a critical mass of human biological samples for research purposes. Tissues and related data are fundamental for the development of the biomedical research and the emerging field of translational medicine: they represent the “raw material” for every kind of biomedical study. For this reason, it is crucial to understand the boundaries of Intellectual Property (IP) in this prickly context. In fact, both data sharing and collaborative research have become an imperative in contemporary open science, whose development depends inextricably on: the opportunities to access and use data, the possibility of sharing practices between communities, the cross-checking of information and results and, chiefly, interactions with experts in different fields of knowledge. Data sharing allows both to spread the costs of analytical results that researchers cannot achieve working individually and, if properly managed, to avoid the duplication of research. These advantages are crucial: access to a common pool of pre-competitive data and the possibility to endorse follow-on research projects are fundamental for the progress of biomedicine. This is why the "open movement" is also spreading in the biobank's field. After an overview of the complex interactions among the different stakeholders involved in the process of information and data production, as well as of the main obstacles to the promotion of data sharing (i.e., the appropriability of biological samples and information, the privacy of participants, the lack of interoperability), we will firstly clarify some blurring in language, in particular concerning concepts often mixed up, such as “open source” and “open access”. The aim is to understand whether and to what extent we can apply these concepts to the biomedical field. Afterwards, adopting a comparative perspective, we will analyze the main features of the open models – in particular, the Open Research Data model – which have been proposed in literature for the promotion of data sharing in the field of research biobanks.
After such an analysis, we will suggest some recommendations in order to rebalance the clash between exclusivity - the paradigm characterizing the evolution of intellectual property over the last three centuries - and the actual needs for access to knowledge. We argue that the key factor in this balance may come from the right interaction between IP, social norms and contracts. In particular, we need to combine the incentives and the reward mechanisms characterizing scientific communities with data sharing imperative
Ex post evaluation of the activities of the Joint Research Centre under Horizon 2020 and Euratom 2014-2020
The report is the result of the external Panel ex post evaluation of the JRC activities under H2020 and Euratom 2014-2020. It provides the independent assessment requested in the Council Decisions concerning the specific programmes to be carried out by means of direct actions by the Joint Research Centre implementing the Horizon 2020 Framework Programme (2014-2020) of the European Commission and of the European Atomic Energy Community (Euratom). The evaluation has been conducted by a panel of independent external experts under the chairmanship of Dr Rolf-Dieter Heuer. In this report the Panel concludes positively on the effectiveness of the JRC as the Commission’s science service in support of Euratom and EU policies. Besides a number of recommendations for incremental improvement of the JRC, the Panel has flagged that the JRC is in a unique position as a provider of independent scientific evidence inside the European Commission, but, because of this, the JRC and its research work are less visible to the outside world than they merit. The Panel also flags that the JRC and its stakeholders, internal and external to the Commission, would also benefit from more communication and interactions. The Panel has particularly appreciated the meetings with the stakeholders that gave much insight into the cooperation between the JRC and the other parts of the Commission, supporting our positive assessment and our suggestions for improvement.JRC.A.6 - Quality Assurance and Evaluatio
A high-frequency, long-term data set of hydrology and sediment yield: the alpine badland catchments of Draix-Bléone Observatory
Draix-Bléone critical zone observatory was created in
1983 to study erosion processes in a mountainous badland region of the
French Southern Alps. Six catchments of varying size (0.001 to 22 km2)
and vegetation cover are equipped to measure water and sediment fluxes, both
as bedload and suspended load. This paper presents the core dataset of the
observatory, including rainfall and meteorology, high-frequency discharge
and suspended-sediment concentration, and event-scale bedload volumes. The
longest records span almost 40 years. Measurement and data-processing
methods are presented, as well as data quality assessment procedures and
examples of results. All the data presented in this paper are available on
the open repository https://doi.org/10.17180/obs.draix (Draix-Bleone
Observatory, 2015), and a 5-year snapshot is available for review at
https://doi.org/10.57745/BEYQFQ (Klotz et al., 2023).</p
Characterization of Siloxane-poly(methyl methacrylate) Hybrid Films Obtained on a Tinplate Substrate Modified by the Addition of Organic and Inorganic Acids
Tinplate is used to food packaging and other types of packages. The corrosion resistance of the tinplate has been study due the necessity of an alternative to high environmental impact of chromatization process. Therefore protective coatings as hybrid films base elaborations with different acids are studied to improve the barrier effect against corrosion. The objective of this work is characterize hybrid films deposited on a tinplate from a sol made up of the alkoxide precursors 3-(trimethoxysilylpropyl) methacrylate (TMSM), tetraethoxysilane (TEOS) and poly(methyl methacrylate) (PMMA) together with one of three acids (acetic, hydrochloric or nitric acid) and to verify their action against the corrosion of the substrate. The films were obtained by a dip-coating process and cured for 3 hours at 160 °C. The film hydrophobicity was determined by contact angle measurements, and the morphology was evaluated by SEM. FTIR measurements were performed to characterize the chemical structures of the films. The electrochemical behavior of the coatings was evaluated by techniques open circuit potential monitoring (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results demonstrate that the siloxane-PMMA films improve the protective properties of the tinplate, with the films obtained by acetic acid addition exhibiting the greatest improvement
- …
