764 research outputs found
Lie series for celestial mechanics, accelerators, satellite stabilization and optimization
Lie series applications to celestial mechanics, accelerators, satellite orbits, and optimizatio
Refracting profiles and generalized holodiagrams
The recently developed concept of refracting profiles and that of refraction
holodiagrams are combined so that the classical Abramson holodiagrams can be
generalized taking into account a wider class of wave fronts and refraction at
an interface, whenever regions of caustics are avoided. These holodiagrams are
obtained as envelopes of specific families of Cartesian Ovals with an
appropriate parametrization. Classical and reflecting holodiagrams are
particular cases of this class. Several of the properties of the classical
holodiagrams are shared by their richer generalized versionsComment: 12 pages, 7 figure
Speckle activity images based on the spatial variance of the phase
We propose the display of the local spatial variance of the temporal variations of the phase as an activity descriptor in dynamic speckle images. The spatial autocorrelation of the speckle intensity is calculated in sliding windows, and an estimation of the variance of the phase variations in each region of the sample is determined. The activity images obtained in this way depict some interesting features and in some cases they could be related to physical magnitudes in the samples. A simulation is presented, and examples corresponding to usual study cases are also shown, namely, fruit bruising and paint drying
Natural and projectively equivariant quantizations by means of Cartan Connections
The existence of a natural and projectively equivariant quantization in the
sense of Lecomte [20] was proved recently by M. Bordemann [4], using the
framework of Thomas-Whitehead connections. We give a new proof of existence
using the notion of Cartan projective connections and we obtain an explicit
formula in terms of these connections. Our method yields the existence of a
projectively equivariant quantization if and only if an \sl(m+1,\R)-equivariant
quantization exists in the flat situation in the sense of [18], thus solving
one of the problems left open by M. Bordemann.Comment: 13 page
Producing valid statistics when legislation, culture, and medical practices differ for births at or before the threshold of survival: Report of a European workshop
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Downloa
Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire
We provide a detailed description of the rutting vocalisations of free-ranging male Iberian deer (Cervus elaphus hispanicus, Hilzheimer 1909), a geographically isolated and morphologically differentiated subspecies of red deer Cervus elaphus. We combine spectrographic examinations, spectral analyses and automated classifications to identify different call types, and
compare the composition of the vocal repertoire with that of other red deer subspecies. Iberian stags give bouts of roars (and more rarely, short series of barks) that are typically composed of two different types of calls. Long Common Roars are mostly given at the beginning or at the end of the bout, and are characterised by a high fundamental frequency (F0) resulting in poorly defined formant frequencies but a relatively high amplitude. In contrast, Short Common Roars are typically given in the middle or at the end of the bout, and are characterised by a lower F0 resulting in relatively well defined vocal tract resonances, but low amplitude. While we did not identify entirely Harsh Roars (as described in the Scottish red
deer subspecies (Cervus elaphus scoticus), a small percentage of Long Common Roars contained segments of deterministic chaos. We suggest that the evolution of two clearly distinct types of Common Roars may reflect divergent selection pressures favouring either vocal efficiency in high pitched roars or the communication of body size in low-pitched, high spectral density roars highlighting vocal tract resonances. The clear divergence of the Iberian red deer vocal repertoire from those of other documented European red deer populations reinforces the status of this geographical variant as a distinct subspecies
Two-dimensional turbulence in magnetised plasmas
In an inhomogeneous magnetised plasma the transport of energy and particles
perpendicular to the magnetic field is in general mainly caused by quasi
two-dimensional turbulent fluid mixing. The physics of turbulence and structure
formation is of ubiquitous importance to every magnetically confined laboratory
plasma for experimental or industrial application. Specifically, high
temperature plasmas for fusion energy research are also dominated by the
properties of this turbulent transport. Self-organisation of turbulent vortices
to mesoscopic structures like zonal flows is related to the formation of
transport barriers that can significantly enhance the confinement of a fusion
plasma. This subject of great importance in research is rarely touched on in
introductory plasma physics or continuum dynamics courses. Here a brief
tutorial on 2D fluid and plasma turbulence is presented as an introduction to
the field, appropriate for inclusion in undergraduate and graduate courses.Comment: This is an author-created, un-copyedited version of an article
published in European Journal of Physics. IOP Publishing Ltd is not
responsible for any errors or omissions in this version of the manuscript or
any version derived from it. The definitive publisher authenticated version
is available online at doi: 10.1088/0143-0807/29/5/00
Markov Properties of Electrical Discharge Current Fluctuations in Plasma
Using the Markovian method, we study the stochastic nature of electrical
discharge current fluctuations in the Helium plasma. Sinusoidal trends are
extracted from the data set by the Fourier-Detrended Fluctuation analysis and
consequently cleaned data is retrieved. We determine the Markov time scale of
the detrended data set by using likelihood analysis. We also estimate the
Kramers-Moyal's coefficients of the discharge current fluctuations and derive
the corresponding Fokker-Planck equation. In addition, the obtained Langevin
equation enables us to reconstruct discharge time series with similar
statistical properties compared with the observed in the experiment. We also
provide an exact decomposition of temporal correlation function by using
Kramers-Moyal's coefficients. We show that for the stationary time series, the
two point temporal correlation function has an exponential decaying behavior
with a characteristic correlation time scale. Our results confirm that, there
is no definite relation between correlation and Markov time scales. However
both of them behave as monotonic increasing function of discharge current
intensity. Finally to complete our analysis, the multifractal behavior of
reconstructed time series using its Keramers-Moyal's coefficients and original
data set are investigated. Extended self similarity analysis demonstrates that
fluctuations in our experimental setup deviates from Kolmogorov (K41) theory
for fully developed turbulence regime.Comment: 25 pages, 9 figures and 4 tables. V3: Added comments, references,
figures and major correction
Construction and commissioning of a technological prototype of a high-granularity semi-digital hadronic calorimeter
A large prototype of 1.3m3 was designed and built as a demonstrator of the
semi-digital hadronic calorimeter (SDHCAL) concept proposed for the future ILC
experiments. The prototype is a sampling hadronic calorimeter of 48 units. Each
unit is built of an active layer made of 1m2 Glass Resistive Plate
Chamber(GRPC) detector placed inside a cassette whose walls are made of
stainless steel. The cassette contains also the electronics used to read out
the GRPC detector. The lateral granularity of the active layer is provided by
the electronics pick-up pads of 1cm2 each. The cassettes are inserted into a
self-supporting mechanical structure built also of stainless steel plates
which, with the cassettes walls, play the role of the absorber. The prototype
was designed to be very compact and important efforts were made to minimize the
number of services cables to optimize the efficiency of the Particle Flow
Algorithm techniques to be used in the future ILC experiments. The different
components of the SDHCAL prototype were studied individually and strict
criteria were applied for the final selection of these components. Basic
calibration procedures were performed after the prototype assembling. The
prototype is the first of a series of new-generation detectors equipped with a
power-pulsing mode intended to reduce the power consumption of this highly
granular detector. A dedicated acquisition system was developed to deal with
the output of more than 440000 electronics channels in both trigger and
triggerless modes. After its completion in 2011, the prototype was commissioned
using cosmic rays and particles beams at CERN.Comment: 49 pages, 41 figure
- …
