5,962 research outputs found
Nonlinear viscoelastic characterization of polycarbonate
Uniaxial tensile creep and recovery data from polycarbonate at six temperatures and six stress levels are analyzed for nonlinear viscoelastic constitutive modeling. A theory to account for combined effects of two or more accelerating factors is presented
Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor
The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale
Reducing Disparities by way of a Cancer Disparities Research Training Program
Background: For minority populations, there is a continuing disparity in the burden of death and illness from cancer. Research to address this disparity should be conducted by investigators who can best understand and address the needs of culturally diverse communities. However, minorities are under-represented in health-related research. The goal of this project was to develop and evaluate an approach to motivating and preparing master’s degree students for careers dedicated to cancer disparities research.
Method: A Cancer Disparities Research Training Program (CDRTP) was initiated in 2010. The program consists of coursework, practicum experiences, and research opportunities. Assessment of the curriculum is based on monitoring achievement of evaluation indicators and includes a quantitative assessment and qualitative approach.
Results: In its first three years, the program graduated 20 trainees, all of whom were minorities (18 African Americans and two Asians). When asked about career goals, two-thirds of the trainees indicated interest in pursuing careers in research on cancer prevention and control. The trainees expressed high satisfaction with the courses, instructor, materials, and curriculum. Although trainees had suggestions about course details, evaluations overall were positive. Across focus groups, three recurrent themes emerged regarding activities to enhance the student experience: having a wider variety of topics, more guest speakers, and field trips.
Conclusion: The CDRTP was intended to recruit students – primarily African Americans – into research on prevention and control of cancer disparities. Although final evaluation of the program’s overall outcome will not be available for several years, a preliminary evaluation indicates the program is being successful
Optical Spectral Signatures of Dusty Starburst Galaxies
We analyse the optical spectral properties of the complete sample of Very
Luminous Infrared Galaxies presented by Wu et al. (1998a,b) and we find a high
fraction (~50 %) of spectra showing both a strong H_delta line in absorption
and relatively modest [OII] emission (e(a) spectra). The e(a) signature has
been proposed as an efficient method to identify dusty starburst galaxies and
we study the star formation activity and the nature of these galaxies, as well
as the effects of dust on their observed properties. We examine their emission
line characteristics, in particular their [OII]/H_alpha ratio, and we find this
to be greatly affected by reddening. A search for AGN spectral signatures
reveals that the e(a)'s are typically HII/LINER galaxies. We compare the star
formation rates derived from the FIR luminosities with the estimates based on
the H_alpha line and find that the values obtained from the optical emission
lines are a factor of 10-70 (H_alpha) and 20-140 ([OII]) lower than the FIR
estimates (50-300 M_sun yr^-1). We then study the morphological properties of
the e(a) galaxies, looking for a near companion or signs of a
merger/interaction. In order to explore the evolution of the e(a) population,
we present an overview of the available observations of e(a)'s in different
environments both at low and high redshift. Finally, we discuss the role of
dust in determining the e(a) spectral properties and we propose a scenario of
selective obscuration in which the extinction decreases with the stellar age.Comment: 26 pages, Latex, including 7 postscript figures, accepted for
publication in the Astrophysical Journa
Continuous macroscopic limit of a discrete stochastic model for interaction of living cells
In the development of multiscale biological models it is crucial to establish
a connection between discrete microscopic or mesoscopic stochastic models and
macroscopic continuous descriptions based on cellular density. In this paper a
continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded
volume is derived, describing cells moving in a medium and reacting to each
other through both direct contact and long range chemotaxis. The continuous
macroscopic model is obtained as a Fokker-Planck equation describing evolution
of the cell probability density function. All coefficients of the general
macroscopic model are derived from parameters of the CPM and a very good
agreement is demonstrated between CPM Monte Carlo simulations and numerical
solution of the macroscopic model. It is also shown that in the absence of
contact cell-cell interactions, the obtained model reduces to the classical
macroscopic Keller-Segel model. General multiscale approach is demonstrated by
simulating spongy bone formation from loosely packed mesenchyme via the
intramembranous route suggesting that self-organizing physical mechanisms can
account for this developmental process.Comment: 4 pages, 3 figure
Feasiblity study for a 34 GHz (Ka band) gyroamplifier
The feasibility of using a gyroklystron power tube as the final amplifier in a 400 kW CW 34 GHz transmitter on the Goldstone Antenna is investigated. A conceptual design of the gyroklystron and the transmission line connecting it with the antenna feed horn is presented. The performance characteristics of the tube and transmission line are compared to the transmitter requirements for a deep space radar system. Areas of technical risk for a follow-on hardware development program for the gyroklystron amplifier and overmoded transmission line components are discussed
Anomalous Noise in the Pseudogap Regime of YBaCuO
An unusual noise component is found near and below about 250 K in the normal
state of underdoped YBCO and Ca-YBCO films. This noise regime, unlike the more
typical noise above 250 K, has features expected for a symmetry-breaking
collective electronic state. These include large individual fluctuators, a
magnetic sensitivity, and aging effects. A possible interpretation in terms of
fluctuating charge nematic order is presented.Comment: 4 pages, 4 figure
Stromule extension along microtubules coordinated with actin-mediated anchoring guides perinuclear chloroplast movement during innate immunity.
Dynamic tubular extensions from chloroplasts called stromules have recently been shown to connect with nuclei and function during innate immunity. We demonstrate that stromules extend along microtubules (MTs) and MT organization directly affects stromule dynamics since stabilization of MTs chemically or genetically increases stromule numbers and length. Although actin filaments (AFs) are not required for stromule extension, they provide anchor points for stromules. Interestingly, there is a strong correlation between the direction of stromules from chloroplasts and the direction of chloroplast movement. Stromule-directed chloroplast movement was observed in steady-state conditions without immune induction, suggesting it is a general function of stromules in epidermal cells. Our results show that MTs and AFs may facilitate perinuclear clustering of chloroplasts during an innate immune response. We propose a model in which stromules extend along MTs and connect to AF anchor points surrounding nuclei, facilitating stromule-directed movement of chloroplasts to nuclei during innate immunity
A first--order irreversible thermodynamic approach to a simple energy converter
Several authors have shown that dissipative thermal cycle models based on
Finite-Time Thermodynamics exhibit loop-shaped curves of power output versus
efficiency, such as it occurs with actual dissipative thermal engines. Within
the context of First-Order Irreversible Thermodynamics (FOIT), in this work we
show that for an energy converter consisting of two coupled fluxes it is also
possible to find loop-shaped curves of both power output and the so-called
ecological function against efficiency. In a previous work Stucki [J.W. Stucki,
Eur. J. Biochem. vol. 109, 269 (1980)] used a FOIT-approach to describe the
modes of thermodynamic performance of oxidative phosphorylation involved in
ATP-synthesis within mithochondrias. In that work the author did not use the
mentioned loop-shaped curves and he proposed that oxidative phosphorylation
operates in a steady state simultaneously at minimum entropy production and
maximum efficiency, by means of a conductance matching condition between
extreme states of zero and infinite conductances respectively. In the present
work we show that all Stucki's results about the oxidative phosphorylation
energetics can be obtained without the so-called conductance matching
condition. On the other hand, we also show that the minimum entropy production
state implies both null power output and efficiency and therefore this state is
not fulfilled by the oxidative phosphorylation performance. Our results suggest
that actual efficiency values of oxidative phosphorylation performance are
better described by a mode of operation consisting in the simultaneous
maximization of the so-called ecological function and the efficiency.Comment: 20 pages, 7 figures, submitted to Phys. Rev.
- …
