9,616 research outputs found
On the macroion virial contribution to the osmotic pressure in charge-stabilized colloidal suspensions
Our interest goes to the different virial contributions to the equation of
state of charged colloidal suspensions. Neglect of surface effects in the
computation of the colloidal virial term leads to spurious and paradoxical
results. This pitfall is one of the several facets of the danger of a naive
implementation of the so called One Component Model, where the micro-ionic
degrees of freedom are integrated out to only keep in the description the
mesoscopic (colloidal) degrees of freedom. On the other hand, due incorporation
of wall induced forces dissolves the paradox brought forth in the naive
approach, provides a consistent description, and confirms that for salt-free
systems, the colloidal contribution to the pressure is dominated by the
micro-ionic one. Much emphasis is put on the no salt case but the situation
with added electrolyte is also discussed
Study of star-forming galaxies in SDSS up to redshift 0.4: I. Metallicity evolution
The chemical composition of the gas in galaxies versus cosmic time provides a
very important tool for understanding galaxy evolution. Although there are many
studies at high redshift, they are rather scarce at lower redshifts. However,
low redshift studies can provide important clues about the evolution of
galaxies, furnishing the required link between local and high redshift
universe. In this work we focus on the metallicity of the gas of star-forming
galaxies at low redshift, looking for signs of chemical evolution.
To analyze the metallicity contents star-forming galaxies of similar
luminosities and masses at different redshifts. With this purpose, we present a
study of the metallicity of relatively massive (log(M_star/M_sun)>10.5) star
forming galaxies from SDSS--DR5 (Sloan Digital Sky Survey--Data Release 5),
using different redshift intervals from 0.04 to 0.4.
We used data processed with the STARLIGHT spectral synthesis code, correcting
the fluxes for dust extinction, estimating metallicities using the R_23 method,
and segregating the samples with respect to the value of the
[NII]6583/[OII]3727 line ratio in order to break the R_23 degeneracy selecting
the upper branch. We analyze the luminosity and mass-metallicity relations, and
the effect of the Sloan fiber diameter looking for possible biases.
By dividing our redshift samples in intervals of similar magnitude and
comparing them, significant signs of metallicity evolution are found.
Metallicity correlates inversely with redshift: from redshift 0 to 0.4 a
decrement of ~0.1 dex in 12+log(O/H) is found.Comment: 11 pages, 9 figures, Accepted for publication in A&
A scintillating plastic fiber tracking detector for neutron and proton imaging and spectroscopy
We report the results of recent calibration data analysis of a prototype scintillating fiber tracking detector system designed to perform imaging, spectroscopy and particle identification on 20 to 250 MeV neutrons and protons. We present the neutron imaging concept and briefly review the detection principle and the prototype description. The prototype detector system records ionization track data on an event-by-event basis allowing event selection criteria to be used in the off-line analysis. Images of acrylic phantoms from the analysis of recent proton beam calibrations (14 to 65 MeV range) are presented as demonstrations of the particle identification, imaging and energy measurement capabilities. The measured position resolution is c 500 pm. The measured energy resolution (AE/E, FWHM) is 14.2% at 35 MeV. An effective technique for track identification and data compression is presented. The detection techniques employed can be applied to measurements in a variety of disciplines including solar and atmospheric physics, radiation therapy and nuclear materials monitoring. These applications are discussed briefly as are alternative detector configurations and future development plans
Modeling Heterogeneous Materials via Two-Point Correlation Functions: I. Basic Principles
Heterogeneous materials abound in nature and man-made situations. Examples
include porous media, biological materials, and composite materials. Diverse
and interesting properties exhibited by these materials result from their
complex microstructures, which also make it difficult to model the materials.
In this first part of a series of two papers, we collect the known necessary
conditions on the standard two-point correlation function S2(r) and formulate a
new conjecture. In particular, we argue that given a complete two-point
correlation function space, S2(r) of any statistically homogeneous material can
be expressed through a map on a selected set of bases of the function space. We
provide new examples of realizable two-point correlation functions and suggest
a set of analytical basis functions. Moreover, we devise an efficient and
isotropy- preserving construction algorithm, namely, the Lattice-Point
algorithm to generate realizations of materials from their two- point
correlation functions based on the Yeong-Torquato technique. Subsequent
analysis can be performed on the generated images to obtain desired macroscopic
properties. These developments are integrated here into a general scheme that
enables one to model and categorize heterogeneous materials via two-point
correlation functions.Comment: 37 pages, 26 figure
The Structure and Star-Formation History of NGC 5461
We compute photoionization models for the giant extragalactic H II region NGC
5461, and compare their predictions to several observational constraints. Since
we aim at reproducing not only the global properties of the region, but its
local structure also, the models are constrained to reproduce the observed
density profile, and our analysis takes into consideration the bias introduced
by the shapes and sizes of the slits used by different observers. We find that
an asymmetric nebula with a gaussian density distribution, powered by a young
burst of 3.1 Myr, satisfactorily reproduces most of the constraints, and that
the star-formation efficiency inferred from the model agrees with current
estimates. Our results strongly depend on the assumed density law, since
constant density models overestimate the hardness of the ionizing field,
affecting the deduced properties of the central stellar cluster. We illustrate
the features of our best model, and discuss the possible sources of errors and
uncertainties affecting the outcome of this type of studies.Comment: 33 pages (LaTeX), 3 .eps figures. to be published in ApJ, May 200
Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters
We present high-resolution (R ~ 24,600) near-IR spectroscopy of the youngest
super star clusters (SSCs) in the prototypical starburst merger, the Antennae
Galaxies. These SSCs are young (3-7 Myr old) and massive (10^5 - 10^7 M_sun for
a Kroupa IMF) and their spectra are characterized by broad, extended Br-gamma
emission, so we refer to them as emission-line clusters (ELCs) to distinguish
them from older SSCs. The Brgamma lines of most ELCs have supersonic widths
(60-110 km/s FWHM) and non-Gaussian wings whose velocities exceed the clusters'
escape velocities. This high-velocity unbound gas is flowing out in winds that
are powered by the clusters' massive O and W-R stars over the course of at
least several crossing times. The large sizes of some ELCs relative to those of
older SSCs may be due to expansion caused by these outflows; many of the ELCs
may not survive as bound stellar systems, but rather dissipate rapidly into the
field population. The observed tendency of older ELCs to be more compact than
young ones is consistent with the preferential survival of the most
concentrated clusters at a given age.Comment: Accepted to Ap
Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell
PubMed ID: 23592993This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
- …
