21,843 research outputs found
Formation of terrestrial planets in close binary systems: the case of Alpha Centauri A
At present the possible existence of planets around the stars of a close
binary system is still matter of debate. Can planetary bodies form in spite of
the strong gravitational perturbations of the companion star? We study in this
paper via numerical simulation the last stage of planetary formation, from
embryos to terrestrial planets in the Alpha Cen system, the prototype of close
binary systems. We find that Earth class planets can grow around Alpha Cen A on
a time-scale of 50 Myr. In some of our numerical models the planets form
directly in the habitable zone of the star in low eccentric orbits. In one
simulation two of the final planets are in a 2:1 mean motion resonance that,
however, becomes unstable after 200 Myr. During the formation process some
planetary embryos fall into the stars possibly altering their metallicity.Comment: accepted for pubblication in A&A, 13 pages, 9 figure
Opening the Treasure Chest in Carina
We have mapped the G287.84-0.82 cometary globule (with the Treasure Chest
cluster embedded in it) in the South Pillars region of Carina (i) in [CII],
63micron [OI], and CO(11-10) using upGREAT on SOFIA and (ii) in J=2-1
transitions of CO, 13CO, C18O and J=3-2 transitions of H2CO using the APEX
telescope in Chile. We probe the morphology, kinematics, and physical
conditions of the molecular gas and the photon dominated regions (PDRs) in
G287.84-0.82. The [CII] and [OI] emission suggest that the overall structure of
the pillar (with red-shifted photo evaporating tails) is consistent with the
effect of FUV radiation and winds from eta-Car and O stars in Trumpler 16. The
gas in the head of the pillar is strongly influenced by the embedded cluster,
whose brightest member is an O9.5V star, CPD-59 2661. The emission of the [CII]
and [OI] lines peak at a position close to the embedded star, while all other
tracers peak at another position lying to the north-east consistent with gas
being compressed by the expanding PDR created by the embedded cluster. The
molecular gas inside the globule is probed with the J=2-1 transitions of CO and
isotopologues as well as H2CO, and analyzed using a non-LTE model
(escape-probability approach), while we use PDR models to derive the physical
conditions of the PDR. We identify at least two PDR gas components; the diffuse
part (~10^4 cm^-3) is traced by [CII], while the dense (n~ 2-8x10^5 cm^-3) part
is traced by [CII], [OI], CO(11-10). Using the F=2-1 transition of [13CII]
detected at 50 positions in the region, we derive optical depths (0.9-5),
excitation temperatures of [CII] (80-255 K), and N(C+) of 0.3-1x10^19 cm^-2.
The total mass of the globule is ~1000 Msun, about half of which is traced by
[CII]. The dense PDR gas has a thermal pressure of 10^7-10^8 K cm^-3, which is
similar to the values observed in other regions.Comment: Accepted for publication in Astronomy and Astrophysics (abstract
slightly abridged
The effects of bed rest on crew performance during simulated shuttle reentry. Volume 1: Study overview and physiological results
A centrifuge study was carried out to measure physiological stress and control task performance during simulated space shuttle orbiter reentry. Jet pilots were tested with, and without, anti-g-suit protection. The pilots were exposed to simulated space shuttle reentry acceleration profiles before, and after, ten days of complete bed rest, which produced physiological deconditioning similar to that resulting from prolonged exposure to orbital zero g. Pilot performance in selected control tasks was determined during simulated reentry, and before and after each simulation. Physiological stress during reentry was determined by monitoring heart rate, blood pressure, and respiration rate. Study results indicate: (1) heart rate increased during the simulated reentry when no g protection was given, and remained at or below pre-bed rest values when g-suits were used; (2) pilots preferred the use of g-suits to muscular contraction for control of vision tunneling and grayout during reentry; (3) prolonged bed rest did not alter blood pressure or respiration rate during reentry, but the peak reentry acceleration level did; and (4) pilot performance was not affected by prolonged bed rest or simulated reentry
On data skewness, stragglers, and MapReduce progress indicators
We tackle the problem of predicting the performance of MapReduce
applications, designing accurate progress indicators that keep programmers
informed on the percentage of completed computation time during the execution
of a job. Through extensive experiments, we show that state-of-the-art progress
indicators (including the one provided by Hadoop) can be seriously harmed by
data skewness, load unbalancing, and straggling tasks. This is mainly due to
their implicit assumption that the running time depends linearly on the input
size. We thus design a novel profile-guided progress indicator, called
NearestFit, that operates without the linear hypothesis assumption and exploits
a careful combination of nearest neighbor regression and statistical curve
fitting techniques. Our theoretical progress model requires fine-grained
profile data, that can be very difficult to manage in practice. To overcome
this issue, we resort to computing accurate approximations for some of the
quantities used in our model through space- and time-efficient data streaming
algorithms. We implemented NearestFit on top of Hadoop 2.6.0. An extensive
empirical assessment over the Amazon EC2 platform on a variety of real-world
benchmarks shows that NearestFit is practical w.r.t. space and time overheads
and that its accuracy is generally very good, even in scenarios where
competitors incur non-negligible errors and wide prediction fluctuations.
Overall, NearestFit significantly improves the current state-of-art on progress
analysis for MapReduce
Strain monitoring of tapestries: results of a three-year research project
The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain
Multidisciplinary fieldwork training in a professional geoscience environment: Quaternary mapping, landscape literacy and hazard identification
This report was produced to describe the Quaternary geology of north-east England and how it
can be interpreted and mapped. It is based on previous manuals for Quaternary geology mapping
training produced by the British Geological Survey. It gives insight into the glacial and
periglacial processes of the Yorkshire coast and the Vale of York
Drawing Planar Graphs with a Prescribed Inner Face
Given a plane graph (i.e., a planar graph with a fixed planar embedding)
and a simple cycle in whose vertices are mapped to a convex polygon, we
consider the question whether this drawing can be extended to a planar
straight-line drawing of . We characterize when this is possible in terms of
simple necessary conditions, which we prove to be sufficient. This also leads
to a linear-time testing algorithm. If a drawing extension exists, it can be
computed in the same running time
- …
