16,291 research outputs found
Robust stability of second-order systems
A feedback linearization technique is used in conjunction with passivity concepts to design robust controllers for space robots. It is assumed that bounded modeling uncertainties exist in the inertia matrix and the vector representing the coriolis, centripetal, and friction forces. Under these assumptions, the controller guarantees asymptotic tracking of the joint variables. A Lagrangian approach is used to develop a dynamic model for space robots. Closed-loop simulation results are illustrated for a simple case of a single link planar manipulator with freely floating base
Theory and computation of optimal low- and medium-thrust transfers
This report presents the formulation of the optimal low- and medium-thrust orbit transfer control problem and methods for numerical solution of the problem. The problem formulation is for final mass maximization and allows for second-harmonic oblateness, atmospheric drag, and three-dimensional, non-coplanar, non-aligned elliptic terminal orbits. We setup some examples to demonstrate the ability of two indirect methods to solve the resulting TPBVP's. The methods demonstrated are the multiple-point shooting method as formulated in H. J. Oberle's subroutine BOUNDSCO, and the minimizing boundary-condition method (MBCM). We find that although both methods can converge solutions, there are trade-offs to using either method. BOUNDSCO has very poor convergence for guesses that do not exhibit the correct switching structure. MBCM, however, converges for a wider range of guesses. However, BOUNDSCO's multi-point structure allows more freedom in quesses by increasing the node points as opposed to only quessing the initial state in MBCM. Finally, we note an additional drawback for BOUNDSCO: the routine does not supply information to the users routines for switching function polarity but only the location of a preset number of switching points
Functional Bias and Spatial Organization of Genes in Mutational Hot and Cold Regions in the Human Genome
The neutral mutation rate is known to vary widely along human chromosomes,
leading to mutational hot and cold regions. We provide evidence that categories
of functionally-related genes reside preferentially in mutationally hot or cold
regions, the size of which we have measured. Genes in hot regions are biased
toward extra-cellular communication (surface receptors, cell adhesion, immune
response, etc.) while those in cold regions are biased toward essential
cellular processes (gene regulation, RNA processing, protein modification,
etc.). From a selective perspective, this organization of genes could minimize
the mutational load on genes that need to be conserved and allow fast evolution
for genes that must frequently adapt. We also analyze the effect of gene
duplication and chromosomal recombination, which contribute significantly to
these biases for certain categories of hot genes. Overall, our results show
that genes are located non-randomly with respect to hot and cold regions,
offering the possibility that selection acts at the level of gene location in
the human genome.Comment: 17 pages, 6 figures, 2 tables. accepted to PLOS Biology, Feb. 2004
issu
Kleshchev's decomposition numbers and branching coefficients in the Fock space
10.1090/S0002-9947-07-04202-XTransactions of the American Mathematical Society36031179-119
Cocommutative coalgebras: homotopy theory and Koszul duality
We extend a construction of Hinich to obtain a closed model category
structure on all differential graded cocommutative coalgebras over an
algebraically closed field of characteristic zero. We further show that the
Koszul duality between commutative and Lie algebras extends to a Quillen
equivalence between cocommutative coalgebras and formal coproducts of curved
Lie algebras.Comment: 38 page
Deterministic and cascadable conditional phase gate for photonic qubits
Previous analyses of conditional \phi-phase gates for photonic qubits that
treat cross-phase modulation (XPM) in a causal, multimode, quantum field
setting suggest that a large (~\pi rad) nonlinear phase shift is always
accompanied by fidelity-degrading noise [J. H. Shapiro, Phys. Rev. A 73, 062305
(2006); J. Gea-Banacloche, Phys. Rev. A 81, 043823 (2010)]. Using an atomic
V-system to model an XPM medium, we present a conditional phase gate that, for
sufficiently small nonzero \phi, has high fidelity. The gate is made cascadable
by using using a special measurement, principal mode projection, to exploit the
quantum Zeno effect and preclude the accumulation of fidelity-degrading
departures from the principal-mode Hilbert space when both control and target
photons illuminate the gate
High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers
This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB
Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations
Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations
A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center
A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices
- …
