12,504 research outputs found
Optical selection rules of graphene nanoribbons
Optical selection rules for one-dimensional graphene nanoribbons are
analytically studied and clarified based on the tight-binding model. A
theoretical explanation, through analyzing the velocity matrix elements and the
features of wavefunctions, can account for the selection rules, which depend on
the edge structure of nanoribbon, namely armchair or zigzag edges. The
selection rule of armchair nanoribbons is \Delta J=0, and the optical
transitions occur from the conduction to valence subbands of the same index.
Such a selection rule originates in the relationships between two sublattices
and between conduction and valence subbands. On the other hand, zigzag
nanoribbons exhibit the selection rule |\Delta J|=odd, which results from the
alternatively changing symmetry property as the subband index increases. An
efficiently theoretical prediction on transition energies is obtained with the
application of selection rules. Furthermore, the energies of band edge states
become experimentally attainable via optical measurements
An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks
Maximizing the lifetime of wireless sensor networks (WSNs) is a challenging problem. Although some methods exist to address the problem in homogeneous WSNs, research on this problem in heterogeneous WSNs have progressed at a slow pace. Inspired by the promising performance of ant colony optimization (ACO) to solve combinatorial problems, this paper proposes an ACO-based approach that can maximize the lifetime of heterogeneous WSNs. The methodology is based on finding the maximum number of disjoint connected covers that satisfy both sensing coverage and network connectivity. A construction graph is designed with each vertex denoting the assignment of a device in a subset. Based on pheromone and heuristic information, the ants seek an optimal path on the construction graph to maximize the number of connected covers. The pheromone serves as a metaphor for the search experiences in building connected covers. The heuristic information is used to reflect the desirability of device assignments. A local search procedure is designed to further improve the search efficiency. The proposed approach has been applied to a variety of heterogeneous WSNs. The results show that the approach is effective and efficient in finding high-quality solutions for maximizing the lifetime of heterogeneous WSNs
Multi-user lattice coding for the multiple-access relay channel
This paper considers the multi-antenna multiple access relay channel (MARC),
in which multiple users transmit messages to a common destination with the
assistance of a relay. In a variety of MARC settings, the dynamic decode and
forward (DDF) protocol is very useful due to its outstanding rate performance.
However, the lack of good structured codebooks so far hinders practical
applications of DDF for MARC. In this work, two classes of structured MARC
codes are proposed: 1) one-to-one relay-mapper aided multiuser lattice coding
(O-MLC), and 2) modulo-sum relay-mapper aided multiuser lattice coding
(MS-MLC). The former enjoys better rate performance, while the latter provides
more flexibility to tradeoff between the complexity of the relay mapper and the
rate performance. It is shown that, in order to approach the rate performance
achievable by an unstructured codebook with maximum-likelihood decoding, it is
crucial to use a new K-stage coset decoder for structured O-MLC, instead of the
one-stage decoder proposed in previous works. However, if O-MLC is decoded with
the one-stage decoder only, it can still achieve the optimal DDF
diversity-multiplexing gain tradeoff in the high signal-to-noise ratio regime.
As for MS-MLC, its rate performance can approach that of the O-MLC by
increasing the complexity of the modulo-sum relay-mapper. Finally, for
practical implementations of both O-MLC and MS-MLC, practical short length
lattice codes with linear mappers are designed, which facilitate efficient
lattice decoding. Simulation results show that the proposed coding schemes
outperform existing schemes in terms of outage probabilities in a variety of
channel settings.Comment: 32 pages, 5 figure
MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture
Massively Parallel Computation (MPC) is a model of computation widely believed to best capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters. Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable efficient, privacy-preserving computation over massive data. Clearly if a computation task does not lend itself to an efficient implementation on MPC even without security, then we cannot hope to compute it efficiently on MPC with security. We show, on the other hand, that any task that can be efficiently computed on MPC can also be securely computed with comparable efficiency. Specifically, we show the following results:
- any MPC algorithm can be compiled to a communication-oblivious counterpart while asymptotically preserving its round and space complexity, where communication-obliviousness ensures that any network intermediary observing the communication patterns learn no information about the secret inputs;
- assuming the existence of Fully Homomorphic Encryption with a suitable notion of compactness and other standard cryptographic assumptions, any MPC algorithm can be compiled to a secure counterpart that defends against an adversary who controls not only intermediate network routers but additionally up to 1/3 - ? fraction of machines (for an arbitrarily small constant ?) - moreover, this compilation preserves the round complexity tightly, and preserves the space complexity upto a multiplicative security parameter related blowup.
As an initial exploration of this important direction, our work suggests new definitions and proposes novel protocols that blend algorithmic and cryptographic techniques
Numerically improved computational scheme for the optical conductivity tensor in layered systems
The contour integration technique applied to calculate the optical
conductivity tensor at finite temperatures in the case of layered systems
within the framework of the spin-polarized relativistic screened
Korringa-Kohn-Rostoker band structure method is improved from the computational
point of view by applying the Gauss-Konrod quadrature for the integrals along
the different parts of the contour and by designing a cumulative special points
scheme for two-dimensional Brillouin zone integrals corresponding to cubic
systems.Comment: 17 pages, LaTeX + 4 figures (Encapsulated PostScript), submitted to
J. Phys.: Condensed Matter (19 Sept. 2000
Quantum metastability in a class of moving potentials
In this paper we consider quantum metastability in a class of moving
potentials introduced by Berry and Klein. Potential in this class has its
height and width scaled in a specific way so that it can be transformed into a
stationary one. In deriving the non-decay probability of the system, we argue
that the appropriate technique to use is the less known method of scattering
states. This method is illustrated through two examples, namely, a moving
delta-potential and a moving barrier potential. For expanding potentials, one
finds that a small but finite non-decay probability persists at large times.
Generalization to scaling potentials of arbitrary shape is briefly indicated.Comment: 10 pages, 1 figure
Psychometric validation of the Persian nine-item Internet Gaming Disorder Scale – Short Form: Does gender and hours spent online gaming affect the interpretations of item descriptions?
The nine-item Internet Gaming Disorder Scale – Short Form (IGDS-SF9) is brief and effective to evaluate Internet Gaming Disorder (IGD) severity. Although its scores show promising psychometric properties, less is known about whether different groups of gamers interpret the items similarly. This study aimed to verify the construct validity of the Persian IGDS-SF9 and examine the scores in relation to gender and hours spent online gaming among 2,363 Iranian adolescents. Methods Confirmatory factor analysis (CFA) and Rasch analysis were used to examine the construct validity of the IGDS-SF9. The effects of gender and time spent online gaming per week were investigated by multigroup CFA and Rasch differential item functioning (DIF). Results The unidimensionality of the IGDS-SF9 was supported in both CFA and Rasch. However, Item 4 (fail to control or cease gaming activities) displayed DIF (DIF contrast = 0.55) slightly over the recommended cutoff in Rasch but was invariant in multigroup CFA across gender. Items 4 (DIF contrast = −0.67) and 9 (jeopardize or lose an important thing because of gaming activity; DIF contrast = 0.61) displayed DIF in Rasch and were non-invariant in multigroup CFA across time spent online gaming. Conclusions Given the Persian IGDS-SF9 was unidimensional, it is concluded that the instrument can be used to assess IGD severity. However, users of the instrument are cautioned concerning the comparisons of the sum scores of the IGDS-SF9 across gender and across adolescents spending different amounts of time online gaming
- …
