3,764 research outputs found
Vulnerability of LTE to Hostile Interference
LTE is well on its way to becoming the primary cellular standard, due to its
performance and low cost. Over the next decade we will become dependent on LTE,
which is why we must ensure it is secure and available when we need it.
Unfortunately, like any wireless technology, disruption through radio jamming
is possible. This paper investigates the extent to which LTE is vulnerable to
intentional jamming, by analyzing the components of the LTE downlink and uplink
signals. The LTE physical layer consists of several physical channels and
signals, most of which are vital to the operation of the link. By taking into
account the density of these physical channels and signals with respect to the
entire frame, as well as the modulation and coding schemes involved, we come up
with a series of vulnerability metrics in the form of jammer to signal ratios.
The ``weakest links'' of the LTE signals are then identified, and used to
establish the overall vulnerability of LTE to hostile interference.Comment: 4 pages, see below for citation. M. Lichtman, J. Reed, M. Norton, T.
Clancy, "Vulnerability of LTE to Hostile Interference'', IEEE Global
Conference on Signal and Information Processing (GlobalSIP), Dec 201
Wind mapping in Venus' upper mesosphere with the IRAM-Plateau de Bure interferometer
The dynamics of the upper mesosphere of Venus (~85-115 km) have been
characterized as a combination of a retrograde superrotating zonal wind (RSZ)
with a subsolar-to-antisolar flow (SSAS). Numerous mm-wave single-dish
observations have been obtained and could directly measure mesospheric
line-of-sight winds by mapping Doppler-shifts on CO rotational lines, but their
limited spatial resolution makes their interpretation difficult. By using
interferometric facilities, one can obtain better resolution on Doppler-shifts
maps, allowing in particular to put firmer constraints on the respective
contributions of the SSAS and RSZ circulations to the global mesospheric wind
field. We report on interferometric observations of the CO(1-0) line obtained
with the IRAM-Plateau de Bure interferometer in November 2007 and June 2009,
that could map the upper mesosphere dynamics on the morning hemisphere with a
very good spatial resolution (3.5-5.5"). All the obtained measurements show,
with a remarkably good temporal stability, that the wind globally flows in the
(sky) East-West direction, corresponding in the observed geometry either to an
unexpected prograde zonal wind or a SSAS flow. A very localized inversion of
the wind direction, that could correspond to a RSZ wind, is also repeatedly
detected in the night hemisphere. The presence of significant meridional winds
is not evidenced. Using models with different combinations of zonal and SSAS
winds, we find that the data is best reproduced by a dominant SSAS flow with a
maximal velocity at the terminator of ~200 m/s, displaying large diurnal and
latitudinal asymmetries, combined with an equatorial RSZ wind of 70-100 m/s,
overall indicating a wind-field structure consistent with but much more complex
than the usual representation of the mesospheric dynamics.Comment: Accepted for publication in A&
Accurate implementation of leaping in space: The spatial partitioned-leaping algorithm
There is a great need for accurate and efficient computational approaches
that can account for both the discrete and stochastic nature of chemical
interactions as well as spatial inhomogeneities and diffusion. This is
particularly true in biology and nanoscale materials science, where the common
assumptions of deterministic dynamics and well-mixed reaction volumes often
break down. In this article, we present a spatial version of the
partitioned-leaping algorithm (PLA), a multiscale accelerated-stochastic
simulation approach built upon the tau-leaping framework of Gillespie. We pay
special attention to the details of the implementation, particularly as it
pertains to the time step calculation procedure. We point out conceptual errors
that have been made in this regard in prior implementations of spatial
tau-leaping and illustrate the manifestation of these errors through practical
examples. Finally, we discuss the fundamental difficulties associated with
incorporating efficient exact-stochastic techniques, such as the next-subvolume
method, into a spatial-leaping framework and suggest possible solutions.Comment: 15 pages, 9 figures, 2 table
A "partitioned leaping" approach for multiscale modeling of chemical reaction dynamics
We present a novel multiscale simulation approach for modeling stochasticity
in chemical reaction networks. The approach seamlessly integrates
exact-stochastic and "leaping" methodologies into a single "partitioned
leaping" algorithmic framework. The technique correctly accounts for stochastic
noise at significantly reduced computational cost, requires the definition of
only three model-independent parameters and is particularly well-suited for
simulating systems containing widely disparate species populations. We present
the theoretical foundations of partitioned leaping, discuss various options for
its practical implementation and demonstrate the utility of the method via
illustrative examples.Comment: v4: 12 pages, 5 figures, final accepted version. Error found and
fixed in Appendi
A noninvasive method for in situ determination of mating success in female American lobsters (Homarus americanus)
Despite being one of the most productive fisheries in the Northwest Atlantic, much remains unknown about the natural reproductive dynamics of American lobsters. Recent work in exploited crustacean populations (crabs and lobsters) suggests that there are circumstances where mature females are unable to achieve their full reproductive potential due to sperm limitation. To examine this possibility in different regions of the American lobster fishery, a reliable and noninvasive method was developed for sampling large numbers of female lobsters at sea. This method involves inserting a blunt-tipped needle into the female's seminal receptacle to determine the presence or absence of a sperm plug and to withdraw a sample that can be examined for the presence of sperm. A series of control studies were conducted at the dock and in the laboratory to test the reliability of this technique. These efforts entailed sampling 294 female lobsters to confirm that the presence of a sperm plug was a reliable indicator of sperm within the receptacle and thus, mating. This paper details the methodology and the results obtained from a subset of the total females sampled. Of the 230 female lobsters sampled from George's Bank and Cape Ann, MA (size range = 71-145 mm in carapace length), 90.3% were positive for sperm. Potential explanations for the absence of sperm in some females include: immaturity (lack of physiological maturity), breakdown of the sperm plug after being used to fertilize a clutch of eggs, and lack of mating activity. The surveys indicate that this technique for examining the mating success of female lobsters is a reliable proxy that can be used in the field to document reproductive activity in natural populations
Spin Waves in the Ferromagnetic Ground State of the Kagome Staircase System Co3V2O8
Inelastic neutron scattering measurements were performed on single crystal
Co3V2O8 wherein magnetic cobalt ions reside on distinct spine and cross-tie
sites within kagome staircase planes. This system displays a rich magnetic
phase diagram which culminates in a ferromagnetic ground state below Tc~6 K. We
have studied the low-lying magnetic excitations in this phase within the kagome
plane. Despite the complexity of the system at higher temperatures, linear
spin-wave theory describes most of the quantitative detail of the inelastic
neutron measurements. Our results show two spin-wave branches, the higher
energy of which displays finite spin-wave lifetimes well below Tc, and
negligible magnetic exchange coupling between Co moments on the spine sites.Comment: 4 pages and 4 figure
Magnetoelastics of a spin liquid: X-ray diffraction studies of Tb2Ti2O7 in pulsed magnetic fields
We report high resolution single crystal x-ray diffraction measurements of
the frustrated pyrochlore magnet Tb2Ti2O7, collected using a novel low
temperature pulsed magnet system. This instrument allows characterization of
structural degrees of freedom to temperatures as low as 4.4 K, and in applied
magnetic fields as large as 30 Tesla. We show that Tb2Ti2O7 manifests
intriguing structural effects under the application of magnetic fields,
including strongly anisotropic giant magnetostriction, a restoration of perfect
pyrochlore symmetry in low magnetic fields, and ultimately a structural phase
transition in high magnetic fields. It is suggested that the magnetoelastic
coupling thus revealed plays a significant role in the spin liquid physics of
Tb2Ti2O7 at low temperatures.Comment: 4 pages, 4 figures, submitted for publicatio
- …
